A cubically convergent iteration method for multiple roots of f(x)=0
暂无分享,去创建一个
[1] Hongwei Wu,et al. On a class of quadratic convergence iteration formulae without derivatives , 2000, Appl. Math. Comput..
[2] G. Stewart. The Convergence of Multipoint Iterations to Multiple Zeros , 1974 .
[3] F. Potra. OnQ-order andR-order of convergence , 1989 .
[4] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[5] J. Douglas Faires,et al. Numerical Analysis , 1981 .
[6] Jianlin Xia,et al. An improved regula falsi method with quadratic convergence of both diameter and point for enclosing simple zeros of nonlinear equations , 2003, Appl. Math. Comput..
[7] J. Traub. Iterative Methods for the Solution of Equations , 1982 .
[8] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[9] John B. Kioustelidis. A derivative-free transformation preserving the order of convergence of iteration methods in case of multiple zeros , 1979 .
[10] Begnaud Francis Hildebrand,et al. Introduction to numerical analysis: 2nd edition , 1987 .
[11] A. Ostrowski. Solution of equations and systems of equations , 1967 .
[12] R. D. Murphy,et al. Iterative solution of nonlinear equations , 1994 .
[13] R. F. King,et al. A secant method for multiple roots , 1977 .
[14] Terje O. Espelid,et al. On the behavior of the secant method near a multiple root , 1972 .
[15] D. Woodhouse. A note on the secant method , 1975 .
[16] J. Miller. Numerical Analysis , 1966, Nature.
[17] Jianlin Xia,et al. Error analysis of a new transformation for multiple zeros finding free from derivative evaluations , 2003 .
[18] D. K. Gupta,et al. An improved regula-falsi method for enclosing simple zeros of nonlinear equations , 2006, Appl. Math. Comput..
[19] Henning Esser. Eine stets quadratisch konvergente Modifikation des Steffensen-Verfahrens , 2005, Computing.
[20] Jianlin Xia,et al. Quadratically convergent multiple roots finding method without derivatives , 2001 .