Posterior spinal instrumentation and decompression with or without cross-link?

[1]  M. Farshad,et al.  Biomechanical Contributions of Spinal Structures with Different Degrees of Disc Degeneration , 2020, Spine.

[2]  M. Farshad,et al.  Cross-links in posterior pedicle screw-rod instrumentation of the spine: a systematic review on mechanical, biomechanical, numerical and clinical studies , 2020, European Spine Journal.

[3]  M. Farshad,et al.  Biomechanical contribution of spinal structures to stability of the lumbar spine - Novel biomechanical insights. , 2020, The spine journal : official journal of the North American Spine Society.

[4]  M. Farshad,et al.  3D printed clamps improve spine specimen fixation in biomechanical testing. , 2019, Journal of biomechanics.

[5]  M. Farshad,et al.  Kinematics of the Spine Under Healthy and Degenerative Conditions: A Systematic Review , 2019, Annals of Biomedical Engineering.

[6]  P. Rommens,et al.  Biomechanical testing of different posterior fusion devices on lumbar spinal range of motion , 2019, Clinical biomechanics.

[7]  Glenn P. Sanders,et al.  Load-sharing through elastic micro-motion accelerates bone formation and interbody fusion. , 2018, The spine journal : official journal of the North American Spine Society.

[8]  H. Wilke,et al.  A pedicle screw system and a lamina hook system provide similar primary and long-term stability: a biomechanical in vitro study with quasi-static and dynamic loading conditions , 2016, European Spine Journal.

[9]  P. Augat,et al.  Dynamic Stabilization with Active Locking Plates Delivers Faster, Stronger, and More Symmetric Fracture-Healing. , 2016, The Journal of bone and joint surgery. American volume.

[10]  R. Lehman,et al.  Biomechanical stability of transverse connectors in the setting of a thoracic pedicle subtraction osteotomy. , 2015, The spine journal : official journal of the North American Spine Society.

[11]  Zhaoxing Pan,et al.  Cross-Links Do Not Improve Clinical or Radiographic Outcomes of Posterior Spinal Fusion With Pedicle Screws in Adolescent Idiopathic Scoliosis: A Multicenter Cohort Study , 2015, Spine deformity.

[12]  L. Holmes,et al.  Effectiveness of cross-linking posterior segmental instrumentation in adolescent idiopathic scoliosis: a 2-year follow-up comparative study. , 2013, The spine journal : official journal of the North American Spine Society.

[13]  William E. Lee,et al.  Comparative analysis of posterior fusion constructs as treatments for middle and posterior column injuries: an in vitro biomechanical investigation. , 2013, Clinical biomechanics.

[14]  R. Delamarter,et al.  Spinal Fusion in the United States: Analysis of Trends From 1998 to 2008 , 2012, Spine.

[15]  K. Wenger,et al.  Effects of facetectomy and crosslink augmentation on motion segment flexibility in posterior lumbar interbody fusion. , 2008, Spine.

[16]  A. Simpson,et al.  Inhibition of fracture healing. , 2007, The Journal of bone and joint surgery. British volume.

[17]  Jason M Highsmith,et al.  Flexible rods and the case for dynamic stabilization. , 2007, Neurosurgical focus.

[18]  R. Hart,et al.  Mechanical Stiffness of Segmental Versus Nonsegmental Pedicle Screw Constructs: The Effect of Cross-Links , 2006, Spine.

[19]  L. Lenke,et al.  Pseudarthrosis in Primary Fusions for Adult Idiopathic Scoliosis: Incidence, Risk Factors, and Outcome Analysis , 2005, Spine.

[20]  J. K. Webb,et al.  Pedicle screw fixation in spinal disorders: A European view , 2005, European Spine Journal.

[21]  L. Claes,et al.  A universal spine tester for in vitro experiments with muscle force simulation , 2005, European Spine Journal.

[22]  W. Hutton,et al.  Adjacent Segment Motion After a Simulated Lumbar Fusion in Different Sagittal Alignments: A Biomechanical Analysis , 2003, Spine.

[23]  Howard S. An,et al.  Biomechanical Evaluation of Diagonal Fixation in Pedicle Screw Instrumentation , 2001, Spine.

[24]  K. Emara,et al.  Delayed Infections After Posterior TSRH Spinal Instrumentation for Idiopathic Scoliosis: Revisited , 2001, Spine.

[25]  K. Bachus,et al.  Segmental pedicle screw fixation or cross-links in multilevel lumbar constructs. a biomechanical analysis. , 2001, The spine journal : official journal of the North American Spine Society.

[26]  L. Claes,et al.  Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants , 1998, European Spine Journal.

[27]  D. Kunz,et al.  Mechanical Evaluation of Cross‐Link Designs in Rigid Pedicle Screw Systems , 1997, Spine.

[28]  D. Kunz,et al.  A biomechanical comparison evaluating the use of intermediate screws and cross-linkage in lumbar pedicle fixation. , 1994, Journal of spinal disorders.

[29]  T. Zdeblick A prospective, randomized study of lumbar fusion. Preliminary results. , 1993, Spine.

[30]  A Chamay,et al.  Mechanical influences in bone remodeling. Experimental research on Wolff's law. , 1972, Journal of biomechanics.