On navigating the human cerebral cortex: Response to ‘in praise of tedious anatomy’

Individual variability of the human cerebral cortex is a source of both fascination and frustration. The fascination arises because variability in cortical structure and function may account for many aspects of our unique personalities and cognitive capabilities. For neuroimagers, the frustration arises because variability presents serious obstacles when attempting to assign particular functional activation patterns to specific cortical areas. Devlin and Poldrack cogently summarize many of the key issues, and they make useful suggestions for linking function to anatomy using a standardized stereotaxic space. This commentary provides a broader perspective on the nature of individual variability that has implications for the choice of strategies used to compensate for variability. It also includes information about the actual differences between various registration strategies and introduces a new strategy for converting neuroimaging data to a standard stereotaxic space.

[1]  Finn Årup Nielsen,et al.  The Brede database: a small database for functional neuroimaging , 2000 .

[2]  David C. Van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex , 2005, NeuroImage.

[3]  Alan C. Evans,et al.  Probabilistic cytoarchitectonic maps transformed into MNI space , 2003 .

[4]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[5]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[7]  D. V. van Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system. , 1997, Nature.

[8]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[9]  D. Purves,et al.  Correlated Size Variations in Human Visual Cortex, Lateral Geniculate Nucleus, and Optic Tract , 1997, The Journal of Neuroscience.

[10]  M. Raichle,et al.  Anatomic Localization and Quantitative Analysis of Gradient Refocused Echo-Planar fMRI Susceptibility Artifacts , 1997, NeuroImage.

[11]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[12]  D. V. van Essen,et al.  Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex , 2000, The Journal of comparative neurology.

[13]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[14]  B. Argall,et al.  Simplified intersubject averaging on the cortical surface using SUMA , 2006, Human brain mapping.

[15]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[16]  J C Mazziotta,et al.  Automated image registration: II. Intersubject validation of linear and nonlinear models. , 1998, Journal of computer assisted tomography.

[17]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[18]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[19]  L. White,et al.  Structure of the human sensorimotor system. II: Lateral symmetry. , 1997, Cerebral cortex.

[20]  Jeffrey R. Binder,et al.  Volumetric vs. surface-based alignment for localization of auditory cortex activation , 2005, NeuroImage.

[21]  L. Chalupa,et al.  Organization of Visual Areas in Macaque and Human Cerebral Cortex , 2002 .

[22]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[23]  Abraham Z. Snyder,et al.  A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume , 2004, NeuroImage.

[24]  D. V. van Essen,et al.  Symmetry of Cortical Folding Abnormalities in Williams Syndrome Revealed by Surface-Based Analyses , 2006, The Journal of Neuroscience.

[25]  Simon B. Eickhoff,et al.  Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—The roles of Brodmann areas 44 and 45 , 2004, NeuroImage.

[26]  L. White,et al.  Structure of the human sensorimotor system. I: Morphology and cytoarchitecture of the central sulcus. , 1997, Cerebral cortex.

[27]  J. Price,et al.  Architectonic subdivision of the human orbital and medial prefrontal cortex , 2003, The Journal of comparative neurology.

[28]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[29]  K. Amunts,et al.  The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. , 2006, Cerebral cortex.

[30]  John W. Harwell,et al.  Surface-Based Atlases and a Database of Cortical Structure and Function , 2003 .

[31]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .