Efficiency measurement with a non-convex free disposal hull technology

We investigate the basic monotonicity properties of least-distance (in)efficiency measures on the class of non-convex FDH (free disposable hull) technologies. We show that any known FDH least-distance measure violates strong monotonicity over the strongly (Pareto-Koopmans) efficient frontier. Taking this result into account, we develop a new class of FDH least-distance measures that satisfy strong monotonicity and show that the developed (in)efficiency measurement framework has a natural profit interpretation.

[1]  R. RajivD.BANKE Estimating most productive scale size using data envelopment analysis , 2003 .

[2]  W. Cooper,et al.  RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA , 1999 .

[3]  Kristiaan Kerstens,et al.  Non-convex Technologies and Cost Functions: Definitions, Duality and Nonparametric Tests of Convexity , 2004 .

[4]  V. V. Podinovski On the linearisation of reference technologies for testing returns to scale in FDH models , 2004, Eur. J. Oper. Res..

[5]  Tim Coelli,et al.  A multi-stage methodology for the solution of orientated DEA models , 1998, Oper. Res. Lett..

[6]  Juan Aparicio,et al.  A well-defined efficiency measure for dealing with closest targets in DEA , 2013, Appl. Math. Comput..

[7]  W. Cooper,et al.  Some models and measures for evaluating performances with DEA: past accomplishments and future prospects , 2007 .

[8]  Jens Leth Hougaard,et al.  An axiomatic characterization of efficiency indices , 1999 .

[9]  Juan Aparicio,et al.  Closest targets and minimum distance to the Pareto-efficient frontier in DEA , 2007 .

[10]  Rolf Färe,et al.  Measuring the technical efficiency of production , 1978 .

[11]  R. Robert Russell,et al.  Continuity of measures of technical efficiency , 1990 .

[12]  R. Färe,et al.  The measurement of efficiency of production , 1985 .

[13]  Joe Zhu,et al.  Multiple Variable Proportionality in Data Envelopment Analysis , 2011, Oper. Res..

[14]  Juan Aparicio,et al.  The relevance of DEA benchmarking information and the Least-Distance Measure: Comment , 2010, Math. Comput. Model..

[15]  R. R. Russell,et al.  Measures of technical efficiency , 1985 .

[16]  Walter Briec,et al.  Hölder Distance Function and Measurement of Technical Efficiency , 1999 .

[17]  Atsuhiko Kai,et al.  LEAST DISTANCE BASED INEFFICIENCY MEASURES ON THE PARETO-EFFICIENT FRONTIER IN DEA , 2012 .

[18]  R. Robert Russell,et al.  Axiomatic foundations of efficiency measurement on data-generated technologies , 2009 .

[19]  Kaoru Tone,et al.  A slacks-based measure of super-efficiency in data envelopment analysis , 2001, Eur. J. Oper. Res..

[20]  Hervé Leleu,et al.  A linear programming framework for free disposal hull technologies and cost functions: Primal and dual models , 2006, Eur. J. Oper. Res..

[21]  A. U.S.,et al.  Measuring the efficiency of decision making units , 2003 .

[22]  Kazuyuki Sekitani,et al.  Input-output substitutability and strongly monotonic p-norm least distance DEA measures , 2014, Eur. J. Oper. Res..

[23]  Kazuyuki Sekitani,et al.  An efficiency measure satisfying the Dmitruk–Koshevoy criteria on DEA technologies , 2012 .

[24]  Jens Leth Hougaard,et al.  Continuous benchmark selections , 2004, Oper. Res. Lett..

[25]  Kristiaan Kerstens,et al.  Estimating returns to scale using non-parametric deterministic technologies: A new method based on goodness-of-fit , 1999, Eur. J. Oper. Res..

[26]  William L. Weber,et al.  Characteristics of a Polluting Technology: Theory and Practice , 2002 .

[27]  Emmanuel Thanassoulis,et al.  Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies , 2003 .

[28]  Patrick T. Harker,et al.  Projections Onto Efficient Frontiers: Theoretical and Computational Extensions to DEA , 1999 .

[29]  Ali Ebrahimnejad,et al.  Finding target units in FDH model by least-distance measure model , 2013, Kybernetika.

[30]  Kazuyuki Sekitani,et al.  An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties , 2009, Eur. J. Oper. Res..

[31]  Jens Leth Hougaard,et al.  On the Functional Form of an Efficiency Index , 1998 .

[32]  Jesús T. Pastor,et al.  An enhanced DEA Russell graph efficiency measure , 1999, Eur. J. Oper. Res..

[33]  Gleb A. Koshevoy,et al.  On the existence of a technical efficiency criterion , 1991 .

[34]  Eduardo González,et al.  From efficiency measurement to efficiency improvement: The choice of a relevant benchmark , 2001, Eur. J. Oper. Res..

[35]  Dominique Deprins,et al.  Measuring Labor-Efficiency in Post Offices , 2006 .

[36]  Kaoru Tone,et al.  A slacks-based measure of efficiency in data envelopment analysis , 1997, Eur. J. Oper. Res..

[37]  Chulwoo Baek,et al.  The relevance of DEA benchmarking information and the Least-Distance Measure , 2009, Math. Comput. Model..