Quantitative phase imaging of live cells with near on-axis digital holographic microscopy using constrained optimization approach

Abstract. We demonstrate a single-shot near on-axis digital holographic microscope that uses a constrained optimization approach for retrieval of the complex object function in the hologram plane. The recovered complex object is back-propagated from the hologram plane to image plane using the Fresnel back-propagation algorithm. A numerical aberration compensation algorithm is employed for correcting the aberrations in the object beam. The reference beam angle is calculated automatically using the modulation property of Fourier transform without any additional recording. We demonstrate this approach using a United States Air Force (USAF) resolution target as an object on our digital holographic microscope. We also demonstrate this approach by recovering the quantitative phase images of live yeast cells, red blood cells and dynamics of live dividing yeast cells.

[1]  R. Dasari,et al.  Diffraction phase microscopy for quantifying cell structure and dynamics. , 2006, Optics letters.

[2]  Gabriel Popescu,et al.  Erythrocyte structure and dynamics quantified by Hilbert phase microscopy. , 2005, Journal of biomedical optics.

[3]  K. Khare,et al.  Single Shot High Resolution Digital Holographic Microscopy , 2014 .

[4]  Myung K. Kim,et al.  Review of digital holographic microscopy for three-dimensional profiling and tracking , 2014 .

[5]  P. Marquet,et al.  Marker-free phase nanoscopy , 2013, Nature Photonics.

[6]  H. Pham,et al.  Diffraction phase microscopy with white light. , 2012, Optics letters.

[7]  Gabriel Popescu,et al.  Diffraction phase and fluorescence microscopy. , 2006, Optics express.

[8]  Kedar Khare,et al.  Single shot high resolution digital holography. , 2013, Optics express.

[9]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[10]  J. Goodman Introduction to Fourier optics , 1969 .

[11]  J. Rogers,et al.  Spatial light interference microscopy (SLIM) , 2010, IEEE Photonic Society 24th Annual Meeting.

[12]  Gabriel Popescu,et al.  Tissue refractometry using Hilbert phase microscopy. , 2007, Optics letters.

[13]  E. Cuche,et al.  Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. , 2000, Applied optics.

[14]  M. Unser,et al.  Complex-wave retrieval from a single off-axis hologram. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  Renu John,et al.  High resolution quantitative phase imaging of live cells with constrained optimization approach , 2016, SPIE BiOS.

[16]  Daniel Carl,et al.  Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. , 2004, Applied optics.

[17]  P. Latimer,et al.  Detection of the vacuole of yeast cells in suspension by transmittance radiometry. , 1979, Applied optics.

[18]  P Marquet,et al.  Exploring neural cell dynamics with digital holographic microscopy. , 2013, Annual review of biomedical engineering.

[19]  Pavel Ventruba,et al.  Digital holographic microscopy in human sperm imaging , 2011, Journal of Assisted Reproduction and Genetics.

[20]  P. Marquet,et al.  Study of Intracellular Ion Dynamics with a Multimodality Approach Combining Epifluorescence and Digital Holographic Microscopy , 2010 .

[21]  Etienne Cuche,et al.  Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation. , 2006, Applied optics.

[22]  F. Bryant,et al.  Changes in total light scattering and absorption caused by changes in particle conformation--a test of theory. , 1969, Archives of biochemistry and biophysics.

[23]  G Di Caprio,et al.  Quantitative Label-Free Animal Sperm Imaging by Means of Digital Holographic Microscopy , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  Christian Depeursinge,et al.  Digital holographic microscopy investigation of second harmonic generated at a glass/air interface. , 2009, Optics letters.

[25]  Etienne Cuche,et al.  Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  Myung K Kim,et al.  Four-dimensional motility tracking of biological cells by digital holographic microscopy , 2014, Journal of biomedical optics.

[27]  F. Zernike Phase contrast, a new method for the microscopic observation of transparent objects , 1942 .

[28]  I. Yamaguchi,et al.  Phase-shifting digital holography. , 1997, Optics letters.

[29]  E. Cuche,et al.  Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. , 2005, Optics letters.

[30]  E. Cuche,et al.  Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. , 1999, Applied optics.

[31]  Gabriel Popescu,et al.  Hilbert phase microscopy for investigating fast dynamics in transparent systems. , 2005, Optics letters.

[32]  Myung K. Kim Principles and techniques of digital holographic microscopy , 2010 .

[33]  Suliana Manley,et al.  Optical measurement of cell membrane tension. , 2006, Physical review letters.

[34]  Renu John,et al.  Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy. , 2016, Applied optics.

[35]  Kedar Khare,et al.  Quantitative phase imaging with single shot digital holography , 2014 .