Frequency domain analysis of robust demodulators for high-speed atomic force microscopy

A fundamental but often overlooked component in the z-axis feedback loop of the atomic force microscope (AFM) operated in dynamic mode is the demodulator. Its purpose is to obtain a preferably fast and low-noise estimate of amplitude and phase of the cantilever deflection signal in the presence of sensor noise and additional distinct frequency components. In this paper, we implement both traditional and recently developed robust methods on a LabVIEW digital processing system for high-bandwidth demodulation. The techniques are rigorously compared experimentally in terms of measurement bandwidth, implementation complexity and robustness to noise. We conclude with showing high-speed tapping-mode AFM images in constant height, highlighting the significance of an adequate demodulator bandwidth.

[1]  Jan Tommy Gravdahl,et al.  Lyapunov Estimator for High-Speed Demodulation in Dynamic Mode Atomic Force Microscopy , 2018, IEEE Transactions on Control Systems Technology.

[2]  Ricardo Garcia,et al.  The emergence of multifrequency force microscopy. , 2012, Nature nanotechnology.

[3]  S. O. Reza Moheimani,et al.  A Kalman Filter for Amplitude Estimation in High-Speed Dynamic Mode Atomic Force Microscopy , 2016, IEEE Transactions on Control Systems Technology.

[4]  Michael G. Ruppert,et al.  High-Bandwidth Demodulation in MF-AFM: A Kalman Filtering Approach , 2016, IEEE/ASME Transactions on Mechatronics.

[5]  S. O. Reza Moheimani,et al.  State estimation for high-speed multifrequency atomic force microscopy , 2016, 2016 American Control Conference (ACC).

[6]  Behzad Razavi Architectures and circuits for RF CMOS receivers , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).

[7]  Walter C. Michels,et al.  A Pentode Lock‐In Amplifier of High Frequency Selectivity , 1941 .

[8]  Graham C. Goodwin,et al.  Design of modulated and demodulated controllers for flexible structures , 2007 .

[9]  Alan V. Oppenheim,et al.  Discrete-time Signal Processing. Vol.2 , 2001 .

[10]  T. Ando,et al.  A high-speed atomic force microscope for studying biological macromolecules , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Harold S. Johnston,et al.  Digital Phase Sensitive Detector , 1968 .

[12]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[13]  Daniel Y. Abramovitch Low Latency Demodulation for Atomic Force Microscopes, Part II: Efficient Calculation of Magnitude and Phase , 2011 .

[14]  Jan Tommy Gravdahl,et al.  On Amplitude Estimation for High-Speed Atomic Force Microscopy , 2016, 2016 American Control Conference (ACC).

[15]  S. O. Reza Moheimani,et al.  Multimode $Q$ Control in Tapping-Mode AFM: Enabling Imaging on Higher Flexural Eigenmodes , 2016, IEEE Transactions on Control Systems Technology.

[16]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[17]  Toshio Ando,et al.  Fast phase imaging in liquids using a rapid scan atomic force microscope , 2006 .

[18]  S O R Moheimani,et al.  A high-bandwidth amplitude estimation technique for dynamic mode atomic force microscopy. , 2014, The Review of scientific instruments.

[19]  S. O. R. Moheimani,et al.  Modulated–demodulated control: Q control of an AFM microcantilever , 2014 .

[20]  T. Ando,et al.  High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes , 2008 .

[21]  P. Heszler,et al.  Novel amplitude and frequency demodulation algorithm for a virtual dynamic atomic force microscope , 2006, Nanotechnology.

[22]  Andrew J. Fleming,et al.  Design, Modeling and Control of Nanopositioning Systems , 2014 .

[23]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[24]  Jack E. Volder The CORDIC Trigonometric Computing Technique , 1959, IRE Trans. Electron. Comput..

[25]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[26]  C R Cosens,et al.  A balance-detector for alternating-current bridges , 1934 .

[27]  Daniel Y. Abramovitch,et al.  Low latency demodulation for Atomic Force Microscopes, Part I efficient real-time integration , 2011, Proceedings of the 2011 American Control Conference.

[28]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.