Frequency domain analysis of robust demodulators for high-speed atomic force microscopy
暂无分享,去创建一个
S. O. Reza Moheimani | Andrew J. Fleming | Michael G. Ruppert | Michael R. P. Ragazzon | David M. Harcombe | A. Fleming | S. Moheimani
[1] Jan Tommy Gravdahl,et al. Lyapunov Estimator for High-Speed Demodulation in Dynamic Mode Atomic Force Microscopy , 2018, IEEE Transactions on Control Systems Technology.
[2] Ricardo Garcia,et al. The emergence of multifrequency force microscopy. , 2012, Nature nanotechnology.
[3] S. O. Reza Moheimani,et al. A Kalman Filter for Amplitude Estimation in High-Speed Dynamic Mode Atomic Force Microscopy , 2016, IEEE Transactions on Control Systems Technology.
[4] Michael G. Ruppert,et al. High-Bandwidth Demodulation in MF-AFM: A Kalman Filtering Approach , 2016, IEEE/ASME Transactions on Mechatronics.
[5] S. O. Reza Moheimani,et al. State estimation for high-speed multifrequency atomic force microscopy , 2016, 2016 American Control Conference (ACC).
[6] Behzad Razavi. Architectures and circuits for RF CMOS receivers , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).
[7] Walter C. Michels,et al. A Pentode Lock‐In Amplifier of High Frequency Selectivity , 1941 .
[8] Graham C. Goodwin,et al. Design of modulated and demodulated controllers for flexible structures , 2007 .
[9] Alan V. Oppenheim,et al. Discrete-time Signal Processing. Vol.2 , 2001 .
[10] T. Ando,et al. A high-speed atomic force microscope for studying biological macromolecules , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[11] Harold S. Johnston,et al. Digital Phase Sensitive Detector , 1968 .
[12] D. Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .
[13] Daniel Y. Abramovitch. Low Latency Demodulation for Atomic Force Microscopes, Part II: Efficient Calculation of Magnitude and Phase , 2011 .
[14] Jan Tommy Gravdahl,et al. On Amplitude Estimation for High-Speed Atomic Force Microscopy , 2016, 2016 American Control Conference (ACC).
[15] S. O. Reza Moheimani,et al. Multimode $Q$ Control in Tapping-Mode AFM: Enabling Imaging on Higher Flexural Eigenmodes , 2016, IEEE Transactions on Control Systems Technology.
[16] Richard A. Brown,et al. Introduction to random signals and applied kalman filtering (3rd ed , 2012 .
[17] Toshio Ando,et al. Fast phase imaging in liquids using a rapid scan atomic force microscope , 2006 .
[18] S O R Moheimani,et al. A high-bandwidth amplitude estimation technique for dynamic mode atomic force microscopy. , 2014, The Review of scientific instruments.
[19] S. O. R. Moheimani,et al. Modulated–demodulated control: Q control of an AFM microcantilever , 2014 .
[20] T. Ando,et al. High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes , 2008 .
[21] P. Heszler,et al. Novel amplitude and frequency demodulation algorithm for a virtual dynamic atomic force microscope , 2006, Nanotechnology.
[22] Andrew J. Fleming,et al. Design, Modeling and Control of Nanopositioning Systems , 2014 .
[23] Ricardo Garcia,et al. Dynamic atomic force microscopy methods , 2002 .
[24] Jack E. Volder. The CORDIC Trigonometric Computing Technique , 1959, IRE Trans. Electron. Comput..
[25] Petros A. Ioannou,et al. Robust Adaptive Control , 2012 .
[26] C R Cosens,et al. A balance-detector for alternating-current bridges , 1934 .
[27] Daniel Y. Abramovitch,et al. Low latency demodulation for Atomic Force Microscopes, Part I efficient real-time integration , 2011, Proceedings of the 2011 American Control Conference.
[28] Gerber,et al. Atomic Force Microscope , 2020, Definitions.