Wavelet algorithms for illumination computations

One of the core problems of computer graphics is the computation of the equilibrium distribution of light in a scene. This distribution is given as the solution to a Fredholm integral equation of the second kind involving an integral over all surfaces in the scene. In the general case such solutions can only be numerically approximated, and are generally costly to compute, due to the geometric complexity of typical computer graphics scenes. For this computation both Monte Carlo and finite element techniques (or hybrid approaches) are typically used. A simplified version of the illumination problem is known as radiosity, which assumes that all surfaces are diffuse reflectors. For this case hierarchical techniques, first introduced by Hanrahan et al. (32), have recently gained prominence. The hierarchical approaches lead to an asymptotic improvement when only finite precision is required. The resulting algorithms have cost proportional to $O(k\sp2 + n)$ versus the usual $O(n\sp2)$ (k is the number of input surfaces, n the number of finite elements into which the input surfaces are meshed). Similarly a hierarchical technique has been introduced for the more general radiance problem (which allows glossy reflectors) by Aupperle et al. (6). In this dissertation we show the equivalence of these hierarchical techniques to the use of a Haar wavelet basis in a general Galerkin framework. By so doing, we come to a deeper understanding of the properties of the numerical approximations used and are able to extend the hierarchical techniques to higher orders. In particular, we show the correspondence of the geometric arguments underlying hierarchical methods to the theory of Calderon-Zygmund operators and their sparse realization in wavelet bases. The resulting wavelet algorithms for radiosity and radiance are analyzed and numerical results achieved with our implementation are reported. We find that the resulting algorithms achieve smaller and smoother errors at equivalent work.

[1]  P. J. Ostwald's Klassiker der Exakten Wissenschaften , 2022, Nature.

[2]  V. Hutson Integral Equations , 1967, Nature.

[3]  W. Jack Bouknight,et al.  A procedure for generation of three-dimensional half-toned computer graphics presentations , 1970, CACM.

[4]  A. Friedman Foundations of modern analysis , 1970 .

[5]  H. Gouraud Continuous Shading of Curved Surfaces , 1971, IEEE Transactions on Computers.

[6]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[7]  Turner Whitted,et al.  An improved illumination model for shaded display , 1979, CACM.

[8]  Donald P. Greenberg,et al.  Modeling the interaction of light between diffuse surfaces , 1984, SIGGRAPH.

[9]  L. Delves,et al.  Computational methods for integral equations: Frontmatter , 1985 .

[10]  Andrew W. Appel,et al.  An Efficient Program for Many-Body Simulation , 1983 .

[11]  Donald P. Greenberg,et al.  The hemi-cube: a radiosity solution for complex environments , 1985, SIGGRAPH.

[12]  Tomoyuki Nishita,et al.  Continuous tone representation of three-dimensional objects taking account of shadows and interreflection , 1985, SIGGRAPH '85.

[13]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[14]  Donald P. Greenberg,et al.  An Efficient Radiosity Approach for Realistic Image Synthesis , 1986, IEEE Computer Graphics and Applications.

[15]  Donald P. Greenberg,et al.  A radiosity method for non-diffuse environments , 1986, SIGGRAPH.

[16]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[17]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[18]  Donald P. Greenberg,et al.  A progressive refinement approach to fast radiosity image generation , 1988, SIGGRAPH.

[19]  Qunsheng Peng,et al.  A new radiosity approach by procedural refinements for realistic image sythesis , 1988, SIGGRAPH.

[20]  John R. Wallace,et al.  A Ray tracing algorithm for progressive radiosity , 1989, SIGGRAPH '89.

[21]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Claude Puech,et al.  A general two-pass method integrating specular and diffuse reflection , 1989, SIGGRAPH '89.

[23]  Peter Shirley,et al.  A ray tracing method for illumination calculation in diffuse-specular scenes , 1990 .

[24]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[25]  Pat Hanrahan,et al.  A rapid hierarchical radiosity algorithm , 1991, SIGGRAPH.

[26]  P. Heckbert Simulating Global Illumination Using Adaptive Meshing , 1991 .

[27]  Stephen H. Westin,et al.  A global illumination solution for general reflectance distributions , 1991, SIGGRAPH.

[28]  Paul S. Heckhert,et al.  Radiosity in Flatland , 1992 .

[29]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[30]  Paul S. Heckbert Radiosity in Flatland , 1992, Comput. Graph. Forum.

[31]  Christophe Schlick,et al.  A Progressive Ray-Tracing-based Radiosity with General Reflectance Functions , 1992 .

[32]  David Salesin,et al.  An importance-driven radiosity algorithm , 1992, SIGGRAPH.

[33]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[34]  Pat Hanrahan,et al.  Wavelet radiosity , 1993, SIGGRAPH.

[35]  Dani Lischinski,et al.  Combining hierarchical radiosity and discontinuity meshing , 1993, SIGGRAPH.

[36]  P. Schröder Numerical Integration for Radiosity in the Presence of Singularities , 1993 .

[37]  Sumanta N. Pattanaik,et al.  Computational Methods for Global Illumination and Visual-isation of Complex 3D Environments , 1993 .

[38]  T. DeRose,et al.  A Continuous Adjoint Formulation for Radiance Transport , 1993 .

[39]  Seth J. Teller,et al.  Global visibility algorithms for illumination computations , 1993, SIGGRAPH.

[40]  B. Alpert A class of bases in L 2 for the sparse representations of integral operators , 1993 .

[41]  Larry Aupperle Hierarchical algorithms for illumination , 1993 .

[42]  Pat Hanrahan,et al.  Importance and Discrete Three Point Transport , 1993 .

[43]  Pat Hanrahan,et al.  A hierarchical illumination algorithm for surfaces with glossy reflection , 1993, SIGGRAPH.

[44]  Michael Cohen,et al.  Radiosity and relaxation methods: progressive refinement is southwell relaxation , 1993 .

[45]  Michael F. Cohen,et al.  Radiosity and realistic image synthesis , 1993 .

[46]  Harold R. Zatz Galerkin radiosity: a higher order solution method for global illumination , 1993, SIGGRAPH.

[47]  Christophe Schlick,et al.  A Customizable Reflectance Model for Everyday Rendering , 1993 .

[48]  S. Jaffard,et al.  Orthonormal wavelets, analysis of operators, and applications to numerical analysis , 1993 .

[49]  Dani Lischinski,et al.  Bounds and error estimates for radiosity , 1994, SIGGRAPH.

[50]  Pat Hanrahan,et al.  Textures and radiosity: controlling emission and reflection with texture maps , 1994, SIGGRAPH.

[51]  James Arvo,et al.  A clustering algorithm for radiosity in complex environments , 1994, SIGGRAPH.

[52]  Seth J. Teller,et al.  Partitioning and ordering large radiosity computations , 1994, SIGGRAPH.

[53]  Pat Hanrahan,et al.  Wavelet Projections for Radiosity , 1994, Comput. Graph. Forum.

[54]  James Arvo,et al.  A framework for the analysis of error in global illumination algorithms , 1994, SIGGRAPH.

[55]  E. J. Stollnitz,et al.  Wavelet Radiance , 1994 .

[56]  François X. Sillion Clustering and Volume Scattering for Hierarchical Radiosity Calculations , 1995 .

[57]  P. Hanrahan,et al.  Wavelet Methods for Radiance Computations , 1995 .