Membrane Packing Problems: A short Review on computational Membrane Modeling Methods and Tools

The use of model membranes is currently part of the daily workflow for many biochemical and biophysical disciplines. These membranes are used to analyze the behavior of small substances, to simulate transport processes, to study the structure of macromolecules or for illustrative purposes. But, how can these membrane structures be generated? This mini review discusses a number of ways to obtain these structures. First, the problem will be formulated as the Membrane Packing Problem. It will be shown that the theoretical problem of placing proteins and lipids onto a membrane area differ significantly. Thus, two sub-problems will be defined and discussed. Then, different – partly historical – membrane modeling methods will be introduced. And finally, membrane modeling tools will be evaluated which are able to semi-automatically generate these model membranes and thus, drastically accelerate and simplify the membrane generation process. The mini review concludes with advice about which tool is appropriate for which application case.

[1]  S. Yesylevskyy ProtSqueeze: Simple and Effective Automated Tool for Setting up Membrane Protein Simulations. , 2007 .

[2]  H. Berendsen,et al.  A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. , 1998, Biophysical journal.

[3]  Jeffery B. Klauda,et al.  CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. , 2009, Biophysical journal.

[4]  Dusanka Janezic,et al.  Liquid-ordered phase formation in cholesterol/sphingomyelin bilayers: all-atom molecular dynamics simulations. , 2009, The journal of physical chemistry. B.

[5]  René Staritzbichler,et al.  GRIFFIN: A versatile methodology for optimization of protein-lipid interfaces for membrane protein simulations. , 2011, Journal of chemical theory and computation.

[6]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[7]  W. Im,et al.  Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations , 2007, PloS one.

[8]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[9]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[10]  Andrea Lodi,et al.  Two-dimensional packing problems: A survey , 2002, Eur. J. Oper. Res..

[11]  R M Venable,et al.  Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. , 1993, Science.

[12]  B. Roux,et al.  Structure, energetics, and dynamics of lipid–protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer , 1996, Proteins.

[13]  Hyeon Joo,et al.  OPM database and PPM web server: resources for positioning of proteins in membranes , 2011, Nucleic Acids Res..

[14]  I. Vattulainen,et al.  Role of glycolipids in lipid rafts: a view through atomistic molecular dynamics simulations with galactosylceramide. , 2010, The journal of physical chemistry. B.

[15]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[16]  A. W. Götz,et al.  Application of Adaptive QM/MM Methods to Molecular Dynamics Simulations of Aqueous Systems. , 2012, Journal of chemical theory and computation.

[17]  Zukang Feng,et al.  Ligand Depot: a data warehouse for ligands bound to macromolecules , 2004, Bioinform..

[18]  Jens Krüger,et al.  Exploring the conformational space of Vpu from HIV‐1: A versatile adaptable protein , 2008, J. Comput. Chem..

[19]  B. Roux,et al.  Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[21]  Zsuzsanna Dosztányi,et al.  TMDET: web server for detecting transmembrane regions of proteins by using their 3D coordinates , 2005, Bioinform..

[22]  L. Shen,et al.  Transmembrane helix structure, dynamics, and interactions: multi-nanosecond molecular dynamics simulations. , 1997, Biophysical journal.

[23]  José Mario Martínez,et al.  Large-Scale Active-Set Box-Constrained Optimization Method with Spectral Projected Gradients , 2002, Comput. Optim. Appl..

[24]  R M Venable,et al.  Model for the structure of the lipid bilayer. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[25]  José Mario Martínez,et al.  Packing optimization for automated generation of complex system's initial configurations for molecular dynamics and docking , 2003, J. Comput. Chem..

[26]  Jonathan Cagan Shape annealing solution to the constrained geometric knapsack problem , 1994, Comput. Aided Des..

[27]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[28]  W F Drew Bennett,et al.  Molecular view of cholesterol flip-flop and chemical potential in different membrane environments. , 2009, Journal of the American Chemical Society.

[29]  Eric Jakobsson,et al.  Sphingomyelin-cholesterol domains in phospholipid membranes: atomistic simulation. , 2004, Biophysical journal.

[30]  Zsuzsanna Dosztányi,et al.  PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank , 2004, Nucleic Acids Res..

[31]  Harald Dyckhoff,et al.  A typology of cutting and packing problems , 1990 .

[32]  T. A. Jones,et al.  Databases in protein crystallography. , 1998, Acta crystallographica. Section D, Biological crystallography.

[33]  Christian Kandt,et al.  Setting up and running molecular dynamics simulations of membrane proteins. , 2007, Methods.

[34]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[35]  Graham R. Smith,et al.  Setting up and optimization of membrane protein simulations , 2002, European Biophysics Journal.

[36]  Jens Krüger,et al.  CELLmicrocosmos 2.2 MembraneEditor: A Modular Interactive Shape-Based Software Approach To Solve Heterogeneous Membrane Packing Problems , 2011, J. Chem. Inf. Model..

[37]  D. Engelman,et al.  Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations. , 2000, Journal of molecular biology.

[38]  Maarten G. Wolf,et al.  g_membed: Efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation , 2010, J. Comput. Chem..

[39]  Suneeta Agarwal,et al.  Notice of RetractionGreedy genetic algorithm to Bounded Knapsack Problem , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[40]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[41]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[42]  Kai Simons,et al.  Lipid Rafts As a Membrane-Organizing Principle , 2010, Science.

[43]  R. Brasseur,et al.  Interaction of Surfactin with Membranes: A Computational Approach , 2003 .

[44]  S. Singer,et al.  The fluid mosaic model of the structure of cell membranes. , 1972, Science.

[45]  Benoît Roux,et al.  Conformational Flexibility of o-Phosphorylcholine and o-Phosphorylethanolamine: A Molecular Dynamics Study of Solvation Effects , 1994 .