Universal Turing Machine and Computability Theory in Isabelle/HOL

We formalise results from computability theory: recursive functions, undecidability of the halting problem, and the existence of a universal Turing machine. This formalisation is the AFP entry corresponding to the paper Mechanising Turing Machines and Computability Theory in Isabelle/HOL, ITP 2013.

[1]  Michael Nedzelsky,et al.  Recursion Theory I , 2008, Arch. Formal Proofs.

[2]  Bertram Felgenhauer Minsky Machines , 2018, Arch. Formal Proofs.

[3]  George Boolos,et al.  Computability and Logic: Uncomputability , 2007 .

[4]  Sebastiaan J. C. Joosten Finding models through graph saturation , 2018, J. Log. Algebraic Methods Program..

[5]  Sebastiaan J. C. Joosten Graph Saturation , 2018, Arch. Formal Proofs.

[6]  Jian Xu,et al.  Mechanising Turing Machines and Computability Theory in Isabelle/HOL , 2013, ITP.