Visualizing the interfacial-layer-based epitaxial growth process toward organic core-shell architectures

[1]  Song Chen,et al.  Hierarchical Integration of Organic Core/Shell Microwires for Advanced Photonics. , 2022, Angewandte Chemie.

[2]  Yang Gao,et al.  Dynamic Epitaxial Growth of Organic Heterostructures for Polarized Exciton Conversion , 2022, Advanced materials.

[3]  Liangsheng Liao,et al.  Organic Charge-Transfer Cocrystals toward Large-Area Nanofiber Membrane for Photothermal Conversion and Imaging. , 2022, ACS nano.

[4]  Y. Zhao,et al.  Realization of Single-Crystal Dye Lasers by Taming Charge Transfer in Molecular Self-Assemblies. , 2022, ACS nano.

[5]  Zuo-Shan Wang,et al.  Organic Branched Heterostructures with Optical Interconnects for Photonic Barcodes. , 2022, Angewandte Chemie.

[6]  Yang Li,et al.  Segregated Array Tailoring Charge‐Transfer Degree of Organic Cocrystal for the Efficient Near‐Infrared Emission beyond 760 nm , 2022, Advanced materials.

[7]  Dongpeng Yan,et al.  Three-primary-color molecular cocrystals showing white-light luminescence, tunable optical waveguide and ultrahigh polarized emission , 2021, Science China Chemistry.

[8]  Guowei Xiao,et al.  Dynamic Manipulating Space-resolved Persistent Luminescence in Core-shell MOFs Heterostructures via Reversible Photochromism. , 2021, Angewandte Chemie.

[9]  Qing Zhang,et al.  Hyperbranched Microwire Networks of Organic Cocrystals with Optical Waveguiding and Light-Harvesting Abilities. , 2021, Angewandte Chemie.

[10]  Stephen Z. D. Cheng,et al.  Accumulated Lattice Strain as an Internal Trigger for Spontaneous Pathway Selection. , 2021, Journal of the American Chemical Society.

[11]  Liangsheng Liao,et al.  Hierarchical Self‐Assembly of Organic Core/Multi‐Shell Microwires for Trichromatic White‐Light Sources , 2021, Advanced materials.

[12]  L. Liao,et al.  Organic superstructure microwires with hierarchical spatial organisation , 2021, Nature Communications.

[13]  J. Yao,et al.  Full-Color and White Circularly Polarized Luminescence of Hydrogen-Bonded Ionic Organic Microcrystals. , 2021, Angewandte Chemie.

[14]  Huanli Dong,et al.  Cocrystal Engineering: toward Solution-Processed Near-Infrared 2D Organic Cocrystals for Broadband Photodetection. , 2020, Angewandte Chemie.

[15]  Yuchen Wu,et al.  Near-Infrared Organic Single-Crystal Nanolaser Arrays Activated by Excited-State Intramolecular Proton Transfer , 2020, Matter.

[16]  Yi Yuan,et al.  Hierarchical self-assembly of organic heterostructure nanowires , 2019, Nature Communications.

[17]  Fangxu Yang,et al.  Cocrystal Engineering: A Collaborative Strategy toward Functional Materials , 2019, Advanced materials.

[18]  W. Lu,et al.  Tunable Multicolor Phosphorescence of Crystalline Polymeric Complex Salts with Metallophilic Backbones. , 2018, Angewandte Chemie.

[19]  W. Hu,et al.  Cocrystals Strategy towards Materials for Near-Infrared Photothermal Conversion and Imaging. , 2018, Angewandte Chemie.

[20]  Y. Zhao,et al.  Organic Microcrystal Vibronic Lasers with Full-Spectrum Tunable Output beyond the Franck-Condon Principle. , 2018, Angewandte Chemie.

[21]  R. Shimizu,et al.  A new electrode design for ambipolar injection in organic semiconductors , 2017, Nature Communications.

[22]  Wenping Hu,et al.  Competition between Arene-Perfluoroarene and Charge-Transfer Interactions in Organic Light-Harvesting Systems. , 2017, Angewandte Chemie.

[23]  M. Hersam,et al.  Mixed-dimensional van der Waals heterostructures. , 2016, Nature materials.

[24]  Huanli Dong,et al.  Gibbs–Curie–Wulff Theorem in Organic Materials: A Case Study on the Relationship between Surface Energy and Crystal Growth , 2016, Advanced materials.

[25]  Y. Zhao,et al.  Construction of Nanowire Heterojunctions: Photonic Function‐Oriented Nanoarchitectonics , 2016, Advanced materials.

[26]  Charles M Lieber,et al.  Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates. , 2015, Nature nanotechnology.

[27]  A. Morpurgo,et al.  Single-crystal organic charge-transfer interfaces probed using Schottky-gated heterostructures. , 2012, Nature materials.

[28]  Chuang Zhang,et al.  Coaxial Organic p‐n Heterojunction Nanowire Arrays: One‐Step Synthesis and Photoelectric Properties , 2012, Advanced materials.

[29]  D. Bassani Supramolecular chemistry: Molecular wires get connected , 2011, Nature.

[30]  T. Fukushima,et al.  Supramolecular Linear Heterojunction Composed of Graphite-Like Semiconducting Nanotubular Segments , 2011, Science.

[31]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[32]  T. Fukushima,et al.  Photoconductive Coaxial Nanotubes of Molecularly Connected Electron Donor and Acceptor Layers , 2006, Science.

[33]  Stephen R. Forrest,et al.  Management of singlet and triplet excitons for efficient white organic light-emitting devices , 2006, Nature.

[34]  Peidong Yang,et al.  Dendritic nanowire ultraviolet laser array. , 2003, Journal of the American Chemical Society.

[35]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[36]  Qiang Shi,et al.  Deepening Insights of Charge Transfer and Photophysics in a Novel Donor-Acceptor Cocrystal for Waveguide Couplers and Photonic Logic Computation. , 2016, Advanced materials.

[37]  Luigi Carbone,et al.  Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms , 2010 .

[38]  ‡ These authors contributed equally. , 2009 .

[39]  heterojunctions,et al.  Polymer photovoltaic cells - enhanced efficiencies via a network of internal donor-acceptor heterojunctions , 2001 .