Information Processing in the Insect Ocellar System: Comparative Approaches t o the Evolution of Visual Processing and Neural Circuits a a This chapter is dedicated to Prof. Hideki Tateda, Shimonoseki City University, Japan.

Publisher Summary This chapter discusses the anatomy, the physiology, and the behavioral roles of insect ocellar systems to provide a search image for the still enigmatic visual system and to theorize on the diversities of ocellar systems. Huge diversities exist in the anatomy, physiology, and behavioral roles among insect ocelli, which prevent a full understanding of the functions of insect ocelli. The chapter also summarizes the diversities of ocellar systems in their structure, neural organization, physiology, and behavioral roles and attempts to interpret them in terms of phylogenetic pathways and adaptations to the environment. This attempt is based on the belief that insect ocellar systems will prove to be a rich field from which to study the evolution of neural circuits. The evolution of neural systems is one of the focal points of neurobiology, but the lack of adequate model systems has hindered the extension of this important research field. The behavioral roles of insect ocelli can be classified into two categories according to their relationship to those of the principal visual organs, the compound eyes. First, the ocelli directly participate in some visual behaviors to complement the compound eyes. Second, the ocelli modulate behaviors mediated by the compound eyes. Many studies have been made on the neural organization of insect ocellar systems using the cobalt filling of the ocellar nerve, the intracellular staining of individual ocellar neurons, and electron microscopy. These studies have revealed both common features and fundamental differences in insect ocellar systems. Electron microscopic studies have shown that the synaptic organizations of ocellar plexus are complicated and differ among different insects.

[1]  W Reichardt,et al.  Autocorrelation, a principle for evaluation of sensory information by the central nervous system , 1961 .

[2]  Berthold K. P. Horn,et al.  Determining lightness from an image , 1974, Comput. Graph. Image Process..

[3]  C. Taylor Contribution of Compound Eyes and Ocelli to Steering of Locusts in Flight: II. Timing Changes in Flight Motor Units , 1981 .

[4]  H. Suzuki,et al.  Activities of antennal and ocellar interneurones in the protocerebrum of the honey-bee. , 1976, The Journal of experimental biology.

[5]  D. Baylor,et al.  Receptive fields of cones in the retina of the turtle , 1971, The Journal of physiology.

[6]  J. L. Eaton Insect Photoreceptor: An Internal Ocellus Is Present in Sphinx Moths , 1971, Science.

[7]  Bruce W. Knight,et al.  A Quantitative Description of the Dynamics of Excitation and Inhibition in the Eye of Limulus , 1970, The Journal of general physiology.

[8]  L. Goodman,et al.  The Structure and Function of the Insect Dorsal Ocellus , 1970 .

[9]  Peter J. Simmons,et al.  A LOCUST WIND AND OCELLAR BRAIN NEURONE , 1980 .

[10]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[11]  Dan-Eric Nilsson,et al.  Optics and Evolution of the Compound Eye , 1989 .

[12]  G. Hill Termites (Isoptera) from the Australian region. , 1942 .

[13]  Simon B. Laughlin,et al.  Presynaptic enhancement of signal transients in photoreceptor terminals in the compound eye , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  J. Storm-Mathisen,et al.  Glutamate-like immunoreactivity in identified neuronal populations of insect nervous systems , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  Y. Toh,et al.  Ocellar system of the insect: comparison of dorsal ocellus and lateral ocellus , 1983, Vision Research.

[16]  G. Fleissner,et al.  The optic nerve mediates the circadian pigment migration in the median eyes of the scorpion , 1978 .

[17]  K. Kral,et al.  Freeze-fracture characteristics of the ocellar retina of the honeybee, Apis mellifica carnica pollm. (Hymenoptera : Apidae) , 1985 .

[18]  J. L. Eaton,et al.  External Ocelli in Lepidoptera Previously Considered to be Anocellate , 1973, Nature.

[19]  K I Naka,et al.  Dynamics of turtle cones , 1987, The Journal of general physiology.

[20]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[21]  J. Dowling,et al.  Neural Organization of the Median Ocellus of the Dragonfly , 1972, The Journal of general physiology.

[22]  T. Heinzeller Circadiane änderungen im endokrinen system der Honigbiene, Apis mellifera, effekt von haft und Ocellenblendung , 1976 .

[23]  S. D. Carlson,et al.  Ultrastructure of the ocellar visual system in normal and mutant Drosophila melanogaster. , 1989, Journal of neurogenetics.

[24]  J. van Santen,et al.  Elaborated Reichardt detectors. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[25]  J Toyoda,et al.  Frequency Characteristics of Retinal Neurons in the Carp , 1974, The Journal of general physiology.

[26]  R. Cooter Ocellus and ocellar nerves of Periplaneta americana L. (Orthoptera: Dictyoptera) , 1975 .

[27]  C. Rivault Role of photoreceptors in the synchronization of the circadian locomotor activity rhythms with the LD cycle in cockroaches (Periplaneta americana) , 1983 .

[28]  S K Roberts,et al.  Photoreception and Entrainment of Cockroach Activity Rhythms , 1965, Science.

[29]  W. Wellington,et al.  Bumblebee Ocelli and Navigation at Dusk , 1974, Science.

[30]  P. Simmons,et al.  Evidence That Histamine is a Neurotransmitter of Photoreceptors in the Locust Ocellus , 1988 .

[31]  K Naka,et al.  Dynamics of turtle horizontal cell response , 1985, The Journal of general physiology.

[32]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[33]  L. Goodman,et al.  Organisation and Physiology of the Insect Dorsal Ocellar System , 1981 .

[34]  R Shapley,et al.  Spatial and temporal properties of luminosity horizontal cells in the turtle retina , 1983, The Journal of general physiology.

[35]  K. Kral,et al.  Cell junctions and other membrane specializations in the ocellus of the wasp, Paravespula Germanica L. (Hymenoptera : Vespidae) , 1986 .

[36]  K Naka,et al.  Dynamics of cockroach ocellar neurons , 1986, The Journal of general physiology.

[37]  Burkhard Schricker,et al.  Die Orientierung der Honigbiene in der Dmmerung: Zugleich ein Beitrag zur Frage der Ocellenfunktion bei Bienen , 1965 .

[38]  Y. Toh,et al.  Synaptic organization of the fleshfly ocellus , 1975, Journal of neurocytology.

[39]  C. Goodman Constancy and uniqueness in a large population of small interneurons. , 1976, Science.

[40]  N. Daw Colour‐coded ganglion cells in the goldfish retina: extension of their receptive fields by means of new stimuli , 1968, The Journal of physiology.

[41]  R. Hardie,et al.  A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse , 1989, Nature.

[42]  Akimichi Kaneko,et al.  Double color-opponent receptive fields of carp bipolar cells , 1983, Vision Research.

[43]  S. Laughlin Neural Principles in the Peripheral Visual Systems of Invertebrates , 1981 .

[44]  J W Moore,et al.  Adaptation in the input‐output relation of the synapse made by the barnacle's photoreceptor. , 1985, The Journal of physiology.

[45]  P. Simmons POSTSYNAPTIC POTENTIALS OF LIMITED DURATION IN VISUAL NEURONES OF A LOCUST , 1985 .

[46]  S. Benzer,et al.  Neuronal development in the drosophila retina: Monoclonal antibodies as molecular probes , 1984, Cell.

[47]  H. Wunderer,et al.  Dorsal ocelli and light-induced diurnal activity patterns in the arctiid moth Creatonotos transiens , 1989 .

[48]  K. Kral Acetylcholinesterase in the ocellus of Apis mellifica , 1980 .

[49]  P. Simmons,et al.  Distribution and structure of identified tonic and phasic synapses between L‐neurones in the locust ocellar tract , 1992, The Journal of comparative neurology.

[50]  M. Mizunami Dynamics of Second-Order Neurons of Cockroach Ocelli , 1989 .

[51]  T. Ichikawa Color and spatial antagonism in the visual system of the larval swallowtail butterfly , 1986, Brain Research.

[52]  T. Goldsmith,et al.  THE SPECTRAL SENSITIVITIES OF THE DORSAL OCELLI OF COCKROACHES AND HONEYBEES , 1958, The Journal of general physiology.

[53]  Jonathon Howard,et al.  An Ocellar Dorsal Light Response in a Dragonfly , 1979 .

[54]  J. Erber,et al.  FMRFamide-like immunoreactivity in the brain of the honeybee (Apis mellifera). A light- and electron microscopical study , 1990, Neuroscience.

[55]  K. Kirschfeld,et al.  The Spectral Sensitivity of the Ocelli of Calliploora (Diptera) , 1977 .

[56]  Martin Wilson Autonomous pigment movement in the radial pupil of locust ocelli , 1975, Nature.

[57]  R. B. Pinter,et al.  The electrophysiological bases for linear and for nonlinear product term lateral inhibition and the consequences for wide field textured stimuli. , 1983, Journal of theoretical biology.

[58]  K. Kral,et al.  Intercellular junctions and rhombic particle arrays in the developing and adult dorsal ocelli of the honeybee. , 1989, Tissue & cell.

[59]  R Wehner,et al.  Oceili: A Celestial Compass in the Desert Ant Cataglyphis , 1985, Science.

[60]  J. Nathans,et al.  Isolation and nucleotide sequence of the gene encoding human rhodopsin. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Roland Hengstenberg,et al.  Intracellular Staining of Insect Neurons with Procion Yellow , 1980 .

[62]  B. Knight The Relationship between the Firing Rate of a Single Neuron and the Level of Activity in a Population of Neurons , 1972, The Journal of general physiology.

[63]  M. Land,et al.  The evolution of eyes. , 1992, Annual review of neuroscience.

[64]  W. N. Ross,et al.  Localized Ca2+and calcium-activated potassium conductances in terminals of a barnacle photoreceptor , 1984, Nature.

[65]  Rüdiger Wehner,et al.  The POL area of the honey bee's eye: behavioural evidence , 1985 .

[66]  E. A. Arbas,et al.  Evolution in nervous systems. , 1991, Annual review of neuroscience.

[67]  N. P. Kristensen Phylogeny of Insect Orders , 1981 .

[68]  S. Stone,et al.  Synaptic feedback onto photoreceptors in the ocellar retina , 1981, Brain Research.

[69]  R. Wyman,et al.  Ion currents in Drosophila flight muscles , 1983, The Journal of physiology.

[70]  Brian K. Kobilka,et al.  Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin , 1986, Nature.

[71]  J. Ammermüller,et al.  Immunohistochemical and electrophysiological evidence that locust ocellar photoreceptors contain and release histamine , 1989, Neuroscience Letters.

[72]  M. Mizunami,et al.  Dynamic relationship between the slow potential and spikes in cockroach ocellar neurons , 1988, The Journal of general physiology.

[73]  Dorsal Light Receptors , 1967, Nature.

[74]  C. Rowell,et al.  Integration of nonphaselocked exteroceptive information in the control of rhythmic flight in the locust. , 1985, Journal of neurophysiology.

[75]  Nicholas J. Strausfeld,et al.  Organizational principles of outputs from Dipteran brains , 1984 .

[76]  K. Naka,et al.  Dynamics of the ganglion cell response in the catfish and frog retinas , 1987, The Journal of general physiology.

[77]  P. Cornwell The Functions of the Ocelli of Calliphora (Diptera) and Locusta (Orthoptera) , 1955 .

[78]  H. Dreisig The importance of illumination level in the daily onset of flight activity in nocturnal moths , 1980 .

[79]  A. Baader Sensitivity of ocellar interneurons of the honeybee to constant and temporally modulated light. , 1989, Journal of neurobiology.

[80]  J. Schwemer Visual Pigments of Compound Eyes — Structure, Photochemistry, and Regeneration , 1989 .

[81]  F S Werblin,et al.  FUNCTIONAL ORGANIZATION OF A VERTEBRATE RETINA: SHARPENING UP IN SPACE AND INTENSITY * , 1972, Annals of the New York Academy of Sciences.

[82]  Milde Jj Characteristics of interneurons in the ocellar system of the honeybee. , 1986 .

[83]  Gwilliam Gf,et al.  Characteristics of neurones projecting from the supraoesophageal ganglion in the shadow reflex pathway of the barnacle. , 1990 .

[84]  Steering responses of adult and nymphal crickets to light, with special reference to the head rolling movement. , 1980 .

[85]  G. Rubin,et al.  A rhodopsin gene expressed in photoreceptor cell R7 of the Drosophila eye: homologies with other signal-transducing molecules , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[86]  K I Naka,et al.  Adaptation in catfish retina. , 1979, Journal of neurophysiology.

[87]  R. Purple,et al.  Interaction of excitation and inhibition in the eccentric cell in the eye of Limulus. , 1965, Cold Spring Harbor symposia on quantitative biology.

[88]  J. Dowling,et al.  Neural Organization of the Median Ocellus of the Dragonfly , 1972, The Journal of general physiology.

[89]  John H. R. Maunsell,et al.  Functions of the ON and OFF channels of the visual system , 1986, Nature.

[90]  S. Benzer,et al.  Transcript localization of four opsin genes in the three visual organs of Drosophila; RH2 is ocellus specific , 1988, Nature.

[91]  J. L. Eaton,et al.  Flight behavior of normal and anocellate cabbage loopers (Lepidoptera: Noctuidae) , 1987 .

[92]  R. Wehner Spatial Vision in Arthropods , 1981 .

[93]  G. Kastberger The ocelli control the flight course in honeybees , 1990 .

[94]  G. Rubin,et al.  Analysis of the promoter of the Rh2 opsin gene in Drosophila melanogaster. , 1987, Genetics.

[95]  Y. Fukada,et al.  Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[96]  H M Sakai,et al.  Signal transmission in the catfish retina. V. Sensitivity and circuit. , 1987, Journal of neurophysiology.

[97]  Gerd Bicker Taurine-like immunoreactivity in photoreceptor cells and mushroom bodies: a comparison of the chemical architecture of insect nervous systems , 1991, Brain Research.

[98]  G. Horridge The evolution of visual processing and the construction of seeing systems , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[99]  N. Strausfeld,et al.  Vision in insects: pathways possibly underlying neural adaptation and lateral inhibition. , 1977, Science.

[100]  Y. Toh,et al.  Fine structure of the dorsal ocellus of the worker honeybee , 1974, Journal of morphology.

[101]  C. H. F. Rowell,et al.  Course correction circuitry translates feature detection into behavioural action in locusts , 1985, Nature.

[102]  Charles P. Taylor Graded interactions between identified neurons from the simple eyes of an insect , 1981, Brain Research.

[103]  J. L. Gould,et al.  Honey bee recruitment: the dance-language controversy. , 1975, Science.

[104]  C. H. F. Rowell,et al.  Ocellar Input to the Flight Motor System of the Locust: Structure and Function , 1983 .

[105]  S J Bolanowski,et al.  Efferent optic nerve fibers mediate circadian rhythms in the Limulus eye. , 1977, Science.

[106]  Y. Toh,et al.  Structure and function of the insect ocellus , 1991 .

[107]  R. Hardie Effects of Antagonists on Putative Histamine Receptors in the First Visual Neuropile of the Housefly (Musca Domestica) , 1988 .

[108]  R L Chappell,et al.  Action spectra and chromatic mechanisms of cells in the median ocelli of dragonflies , 1975, The Journal of general physiology.

[109]  M. Mizunami Nonlinear signal transmission between second- and third-order neurons of cockroach ocelli , 1990, The Journal of general physiology.

[110]  R. Shapley,et al.  Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. , 1976, The Journal of physiology.

[111]  J. Milde Visual responses of interneurones in the posterior median protocerebrum and the central complex of the honeybee Apis mellifera , 1988 .

[112]  H Spekreijse,et al.  Rectification in the goldfish retina: analysis by sinusoidal and auxiliary stimulation. , 1969, Vision research.

[113]  C. Trouth,et al.  The spectral sensitivity of the ocellar system in the cricket Gryllus firmus (Orthoptera: Gryllidae) , 1989 .

[114]  Role of moth ocelli in timing flight initiation at dusk , 1983 .

[115]  C. Goodman Neuron duplications and deletions in locust clones and clutches. , 1977, Science.

[116]  A. Hodgkin,et al.  Changes in time scale and sensitivity in the ommatidia of Limulus , 1964, The Journal of physiology.

[117]  A. Hodgkin,et al.  Changes in time scale and sensitivity in turtle photoreceptors , 1974, The Journal of physiology.

[118]  D. H. Kelly Theory of flicker and transient responses. I. Uniform fields. , 1971, Journal of the Optical Society of America.

[119]  Roland Hengstenberg,et al.  Roll-Stabilization During Flight of the Blowfly’s Head and Body by Mechanical and Visual Cues , 1984 .

[120]  Y. Tominaga,et al.  The fine structure of the dorsal ocellus of the fleshfly. , 1971, Journal of electron microscopy.

[121]  W. Kerfoot Correlation between Ocellar Size and the Foraging Activities of Bees (Hymenoptera; Apoidea) , 1967, The American Naturalist.

[122]  T H Bullock,et al.  Comparative neuroscience holds promise for quiet revolutions. , 1984, Science.

[123]  William A. Fletcher,et al.  Motion Sensitive Descending Interneurons, Ocellar LD Neurons and Neck Motoneurons in the Bee: A Neural Substrate for Visual Course Control in Apis mellifera , 1987 .

[124]  C. Enroth-Cugell,et al.  The receptive‐field spatial structure of cat retinal Y cells. , 1987, The Journal of physiology.

[125]  R. Hengstenberg Multisensory control in insect oculomotor systems. , 1993, Reviews of oculomotor research.

[126]  C. Rowell,et al.  Mesothoracic interneurons involved in flight steering in the locust. , 1991, Tissue & cell.

[127]  Philip Ruck,et al.  A comparison of the electrical responses of compound eyes and dorsal ocelli in four insect species , 1958 .

[128]  R A Normann,et al.  Signal transmission from red cones to horizontal cells in the turtle retina. , 1979, The Journal of physiology.

[129]  H M Sakai,et al.  Signal transmission in the catfish retina. IV. Transmission to ganglion cells. , 1987, Journal of neurophysiology.

[130]  Christian Wehrhahn Ocellar vision and orientation in flies , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[131]  J. Hildebrand,et al.  Histamine‐immunoreactive neurons in the midbrain and suboesophageal ganglion of the sphinx moth Manduca sexta , 1991, The Journal of comparative neurology.

[132]  P. Mobbs Development of the locust ocellus , 1976, Nature.

[133]  K. Kral Large ocellar interneurones (L neurones) in the brain of the wasps, Paravespula Vulgaris L. and P. Germanica L. (Hymenoptera : Vespidae) , 1982 .

[134]  M. Mizunami,et al.  Classification of Ocellar Interneurones in the Cockroach Brain , 1986 .

[135]  Bruce W. Knight,et al.  Dynamics of Encoding in a Population of Neurons , 1972, The Journal of general physiology.

[136]  D. Osorio Mechanisms of early visual processing in the medulla of the locust optic lobe: How self-inhibition, spatial-pooling, and signal rectification contribute to the properties of transient cells , 1991, Visual Neuroscience.

[137]  P. Simmons,et al.  Structure of a tonically transmitting synapse between identified interneurone in the locust brain , 1989, The Journal of comparative neurology.

[138]  J. L. Eaton,et al.  The internal ocellus of Manduca sexta: Electroretinogram and spectral sensitivity , 1977 .

[139]  W. Harris,et al.  Targeted misexpression of a Drosophila opsin gene leads to altered visual function , 1988, Nature.

[140]  K. Hensler THE PARS INTERCEREBRALIS NEURONE PI(2)5 OF LOCUSTS: CONVERGENT PROCESSING OF INPUTS REPORTING HEAD MOVEMENTS AND DEVIATIONS FROM STRAIGHT FLIGHT , 1988 .

[141]  S B Laughlin,et al.  Synaptic limitations to contrast coding in the retina of the blowfly Calliphora , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[142]  A. E. Stuart,et al.  Neuronal properties underlying processing of visual information in the barnacle , 1978, Nature.

[143]  G. V. Miller,et al.  Phototaxis in Drosophila: R1–6 input and interaction among ocellar and compound eye receptors , 1981 .

[144]  G. Rubin,et al.  An opsin gene expressed in only one photoreceptor cell type of the Drosophila eye , 1986, Cell.

[145]  B. Rence,et al.  The role of ocelli in circadian singing rhythms of crickets , 1988 .

[146]  Postembryonic development of the dorsal ocellus of the american cockroach , 1988, The Journal of comparative neurology.

[147]  C. Taylor Contribution of Compound Eyes and Ocelli to Steering Of Locusts in Flight: I. Behavioural Analysis , 1981 .

[148]  G. Bicker,et al.  Distribution of GABA‐like immunoreactivity in the brain of the honeybee , 1986, The Journal of comparative neurology.

[149]  A. Klingman,et al.  Feedback synaptic interaction in the dragonfly ocellar retina , 1978, The Journal of general physiology.

[150]  H. Wunderer,et al.  The fine structure of the dorsal ocelli in the male bibionid fly. , 1988, Tissue & cell.

[151]  P. Mobbs Development of the dorsal ocelli of the desert locust, Schistocerca gregaria forsk (Orthoptera : Acrididae) , 1979 .

[152]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[153]  Y. Toh,et al.  Short Communication: Multimodality of Ocellar Interneurones of the American Cockroach , 1986 .

[154]  K. Kral Ultrastructural analysis of the ocellar tract of the wasps, Paravespula Vulgaris L. and P. Germanica L. (Hymenoptera : Vespidae) , 1983 .

[155]  J. Nathans,et al.  Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.

[156]  Jiirgen J. Milde,et al.  The Ocellar System of the Honeybee , 1987 .

[157]  Y. Toh,et al.  Dorsal ocellar system of the American cockroach: I. Structure of the ocellus and ocellar nerve , 1984 .

[158]  M. Mizunami,et al.  Calcium-Dependent Action Potentials in the Second-Order Neurones of Cockroach Ocelli , 1987 .

[159]  Synaptic transmission between second- and third-order neurones of cockroach ocelli. , 1988, The Journal of experimental biology.

[160]  E Kaplan,et al.  Circadian rhythms in Limulus photoreceptors. I. Intracellular studies , 1987, The Journal of general physiology.

[161]  J. Storm-Mathisen,et al.  Taurine‐like immunoreactivity in the brain of the honeybee , 1988, The Journal of comparative neurology.

[162]  L. Goodman,et al.  The Role of Certain Optomotor Reactions in Regulating Stability in the Rolling Plane During Flight in the Desert Locust, Schistocerca Gregaria , 1965 .

[163]  Y. Toh,et al.  Morphological and physiological characterization of small multimodal ocellar interneurons in the American cockroach , 1990, The Journal of comparative neurology.

[164]  R. Menzel,et al.  Color constancy in the honeybee , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[165]  Charles Sontag,et al.  Spectral Sensitivity Studies on the Visual System of the Praying Mantis, Tenodera sinensis , 1971, The Journal of general physiology.