New Bell inequalities for the singlet state: Going beyond the Grothendieck bound
暂无分享,去创建一个
[1] N. Gisin,et al. Maximal violation of Bell's inequality for arbitrarily large spin , 1992 .
[2] A. Shimony,et al. Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .
[3] N. Gisin,et al. Grothendieck's constant and local models for noisy entangled quantum states , 2006, quant-ph/0606138.
[4] I. Pitowsky. Quantum Probability ― Quantum Logic , 1989 .
[5] Kiel T. Williams,et al. Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.
[6] Michael M. Wolf,et al. Bell inequalities and entanglement , 2001, Quantum Inf. Comput..
[7] Michel Deza,et al. Geometry of cuts and metrics , 2009, Algorithms and combinatorics.
[8] Noga Alon. The CW-Inequalities for Vectors in l1 , 1990, Eur. J. Comb..
[9] David P. DiVincenzo,et al. Quantum information and computation , 2000, Nature.
[10] J. Bell. On the Einstein-Podolsky-Rosen paradox , 1964 .
[11] Peter C. Fishburn,et al. Bell Inequalities, Grothendieck's Constant, and Root Two , 1994, SIAM J. Discret. Math..
[12] B. Tsirelson. Quantum analogues of the Bell inequalities. The case of two spatially separated domains , 1987 .
[13] Werner,et al. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.
[14] M. Wolf,et al. All-multipartite Bell-correlation inequalities for two dichotomic observables per site , 2001, quant-ph/0102024.
[15] E. Wigner. On Hidden Variables and Quantum Mechanical Probabilities , 1970 .
[16] N. Alon,et al. Quadratic forms on graphs , 2006 .
[17] Itamar Pitowsky,et al. Correlation polytopes: Their geometry and complexity , 1991, Math. Program..