Facilitating the incorporation of neuroscience methods and knowledge into brain-computer interfaces

Facilitating the incorporation of neuroscience methods and knowledge into brain-computer interfaces

[1]  Lei Ding,et al.  Motor imagery classification by means of source analysis for brain–computer interface applications , 2004, Journal of neural engineering.

[2]  J.J. Vidal,et al.  Real-time detection of brain events in EEG , 1977, Proceedings of the IEEE.

[3]  M Congedo,et al.  Classification of movement intention by spatially filtered electromagnetic inverse solutions , 2006, Physics in medicine and biology.

[4]  Line Garnero,et al.  Improving quantification of functional networks with EEG inverse problem: Evidence from a decoding point of view , 2011, NeuroImage.

[5]  Sung Chan Jun,et al.  Feasibility of approaches combining sensor and source features in brain–computer interface , 2012, Journal of Neuroscience Methods.

[6]  Tzyy-Ping Jung,et al.  Cortical surface alignment in multi-subject spatiotemporal independent EEG source imaging , 2014, NeuroImage.

[7]  R. Ilmoniemi,et al.  Signal-space projection method for separating MEG or EEG into components , 1997, Medical and Biological Engineering and Computing.

[8]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[9]  C. Rosazza,et al.  Resting-state brain networks: literature review and clinical applications , 2011, Neurological Sciences.

[10]  M. V. D. Heuvel,et al.  Exploring the brain network: A review on resting-state fMRI functional connectivity , 2010, European Neuropsychopharmacology.

[11]  Eric Larson,et al.  Switching auditory attention using spatial and non-spatial features recruits different cortical networks , 2014, NeuroImage.

[12]  Hamid Reza Mohseni,et al.  Dynamic state allocation for MEG source reconstruction , 2013, NeuroImage.

[13]  W. Penfield,et al.  SOMATIC MOTOR AND SENSORY REPRESENTATION IN THE CEREBRAL CORTEX OF MAN AS STUDIED BY ELECTRICAL STIMULATION , 1937 .

[14]  T. Jung,et al.  Translation of EEG Spatial Filters from Resting to Motor Imagery Using Independent Component Analysis , 2012, PloS one.

[15]  Guido Nolte,et al.  Estimating true brain connectivity from EEG/MEG data invariant to linear and static transformations in sensor space , 2012, NeuroImage.

[16]  M. Corbetta,et al.  Large-scale cortical correlation structure of spontaneous oscillatory activity , 2012, Nature Neuroscience.

[17]  M. Hallett,et al.  Identifying true brain interaction from EEG data using the imaginary part of coherency , 2004, Clinical Neurophysiology.

[18]  M. Corbetta,et al.  Temporal dynamics of spontaneous MEG activity in brain networks , 2010, Proceedings of the National Academy of Sciences.

[19]  Fabien Lotte,et al.  Signal Processing Approaches to Minimize or Suppress Calibration Time in Oscillatory Activity-Based Brain–Computer Interfaces , 2015, Proceedings of the IEEE.

[20]  S. Debener,et al.  Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear , 2015, Scientific Reports.

[21]  Gary E. Birch,et al.  A brain-controlled switch for asynchronous control applications , 2000, IEEE Trans. Biomed. Eng..

[22]  Anders M. Dale,et al.  Improved Localization of Cortical Activity By Combining EEG and MEG with MRI Cortical Surface Reconstruction , 2002 .

[23]  Andreas Schulze-Bonhage,et al.  Movement related activity in the high gamma range of the human EEG , 2008, NeuroImage.

[24]  Moritz Grosse-Wentrup,et al.  Beamforming in Noninvasive Brain–Computer Interfaces , 2009, IEEE Transactions on Biomedical Engineering.

[25]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[26]  Motoaki Kawanabe,et al.  Robust common spatial filters with a maxmin approach , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[27]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[28]  Wojciech Samek,et al.  Transferring Subspaces Between Subjects in Brain--Computer Interfacing , 2012, IEEE Transactions on Biomedical Engineering.

[29]  Dennis J. McFarland,et al.  Brain–computer interfaces for communication and control , 2002, Clinical Neurophysiology.

[30]  Febo Cincotti,et al.  High-resolution EEG techniques for brain–computer interface applications , 2008, Journal of Neuroscience Methods.

[31]  Bin He,et al.  Classification of motor imagery by means of cortical current density estimation and Von Neumann entropy , 2007, Journal of neural engineering.

[32]  Motoaki Kawanabe,et al.  Stationary common spatial patterns for brain–computer interfacing , 2012, Journal of neural engineering.

[33]  Charles Sodini,et al.  Wireless behind-the-ear EEG recording device with wireless interface to a mobile device (iPhone/iPod touch) , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[34]  J. Friedman Regularized Discriminant Analysis , 1989 .

[35]  Maarten De Vos,et al.  Wireless EEG with individualized channel layout enables efficient motor imagery training , 2015, Clinical Neurophysiology.

[36]  Bin He,et al.  EEG Source Imaging Enhances the Decoding of Complex Right-Hand Motor Imagery Tasks , 2016, IEEE Transactions on Biomedical Engineering.

[37]  Les E. Atlas,et al.  Flexible tracking of auditory attention , 2015, INTERSPEECH.

[38]  Zhilin Zhang,et al.  Evolving Signal Processing for Brain–Computer Interfaces , 2012, Proceedings of the IEEE.

[39]  Klaus-Robert Müller,et al.  Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller , 2014, Journal of neural engineering.

[40]  A. Bentivoglio,et al.  Analysis of blink rate patterns in normal subjects , 1997, Movement disorders : official journal of the Movement Disorder Society.

[41]  José del R. Millán,et al.  Non-invasive estimation of local field potentials for neuroprosthesis control , 2005, Cognitive Processing.

[42]  B. W. van Dijk,et al.  Opportunities and methodological challenges in EEG and MEG resting state functional brain network research , 2015, Clinical Neurophysiology.

[43]  Jason P. Mitchell Activity in right temporo-parietal junction is not selective for theory-of-mind. , 2008, Cerebral cortex.

[44]  Benoit M. Macq,et al.  Single-Trial EEG Source Reconstruction for Brain–Computer Interface , 2008, IEEE Transactions on Biomedical Engineering.

[45]  Eric Larson,et al.  The cortical dynamics underlying effective switching of auditory spatial attention , 2013, NeuroImage.

[46]  Eric Larson,et al.  Improving spatial localization in MEG inverse imaging by leveraging intersubject anatomical differences , 2014, Front. Neurosci..

[47]  Klaus-Robert Müller,et al.  Using Rest Class and Control Paradigms for Brain Computer Interfacing , 2010, Brain-Computer Interfaces.

[48]  H. Jasper Report of the committee on methods of clinical examination in electroencephalography , 1958 .

[49]  J. Wolpaw,et al.  Brain-Computer Interfaces: Principles and Practice , 2012 .

[50]  B. Schölkopf,et al.  A brain–computer interface based on self-regulation of gamma-oscillations in the superior parietal cortex , 2014, Journal of neural engineering.

[51]  Peter J Hellyer,et al.  The Control of Global Brain Dynamics: Opposing Actions of Frontoparietal Control and Default Mode Networks on Attention , 2014, The Journal of Neuroscience.

[52]  M. Peters,et al.  Volume conduction effects in EEG and MEG. , 1998, Electroencephalography and clinical neurophysiology.

[53]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[54]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[55]  G. Pfurtscheller,et al.  Optimal spatial filtering of single trial EEG during imagined hand movement. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[56]  Klaus-Robert Müller,et al.  Reducing Calibration Time For Brain-Computer Interfaces: A Clustering Approach , 2006, NIPS.

[57]  G. Pfurtscheller,et al.  Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. , 1979, Electroencephalography and clinical neurophysiology.

[58]  Jens Haueisen,et al.  Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations , 2013, NeuroImage.

[59]  E. Donchin,et al.  Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. , 1988, Electroencephalography and clinical neurophysiology.

[60]  Anders M. Dale,et al.  Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature , 2010, NeuroImage.

[61]  Gary E. Birch,et al.  Towards Development of a 3-State Self-Paced Brain-Computer Interface , 2007, Comput. Intell. Neurosci..

[62]  E. Halgren,et al.  Dynamic Statistical Parametric Mapping Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000, Neuron.

[63]  D J McFarland,et al.  An EEG-based brain-computer interface for cursor control. , 1991, Electroencephalography and clinical neurophysiology.

[64]  Moritz Grosse-Wentrup,et al.  Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI , 2011, Comput. Intell. Neurosci..

[65]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[66]  Cuntai Guan,et al.  Detection of motor imagery of swallow EEG signals based on the dual-tree complex wavelet transform and adaptive model selection , 2014, Journal of neural engineering.

[67]  Anatole Lécuyer,et al.  FuRIA: An Inverse Solution Based Feature Extraction Algorithm Using Fuzzy Set Theory for Brain–Computer Interfaces , 2009, IEEE Transactions on Signal Processing.

[68]  W. Penfield The Cerebral Cortex of Man , 1950 .

[69]  Martin Luessi,et al.  MNE software for processing MEG and EEG data , 2014, NeuroImage.

[70]  Cuntai Guan,et al.  Comparison of designs towards a subject-independent brain-computer interface based on motor imagery , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[71]  Shiliang Sun,et al.  A subject transfer framework for EEG classification , 2012, Neurocomputing.

[72]  D. Tucker,et al.  EEG coherency. I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. , 1997, Electroencephalography and clinical neurophysiology.

[73]  Klaus-Robert Müller,et al.  Subject-independent mental state classification in single trials , 2009, Neural Networks.

[74]  Skipper Seabold,et al.  Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.

[75]  Sylvain Baillet The Dowser in the Fields: Searching for MEG Sources , 2010 .

[76]  Rabab K Ward,et al.  A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals , 2007, Journal of neural engineering.

[77]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[78]  John C. Mosher,et al.  Anatomically and Functionally Constrained Minimum-Norm Estimates , 2010 .

[79]  J. Polich Updating P300: An integrative theory of P3a and P3b , 2007, Clinical Neurophysiology.

[80]  Lucas C. Parra,et al.  Recipes for the linear analysis of EEG , 2005, NeuroImage.

[81]  Eric Larson,et al.  Leveraging anatomical information to improve transfer learning in brain–computer interfaces , 2015, Journal of neural engineering.

[82]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[83]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[84]  B. Kamousi,et al.  Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis , 2005, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[85]  Dean J. Krusienski,et al.  BCI Signal Processing: Feature Extraction , 2012 .

[86]  Klaus-Robert Müller,et al.  Towards Zero Training for Brain-Computer Interfacing , 2008, PloS one.

[87]  Horst Bischof,et al.  Toward Self-Paced Brain–Computer Communication: Navigation Through Virtual Worlds , 2008, IEEE Transactions on Biomedical Engineering.

[88]  R. Leahy,et al.  Equivalence of linear approaches in bioelectromagnetic inverse solutions , 2004, IEEE Workshop on Statistical Signal Processing, 2003.

[89]  Suzanne T. Witt,et al.  Functional neuroimaging correlates of finger-tapping task variations: An ALE meta-analysis , 2008, NeuroImage.

[90]  Martin Luessi,et al.  MEG and EEG data analysis with MNE-Python , 2013, Front. Neuroinform..

[91]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[92]  Seungjin Choi,et al.  Composite Common Spatial Pattern for Subject-to-Subject Transfer , 2009, IEEE Signal Processing Letters.

[93]  J. Schoffelen,et al.  Source connectivity analysis with MEG and EEG , 2009, Human brain mapping.

[94]  Tzyy-Ping Jung,et al.  Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review , 2010, IEEE Reviews in Biomedical Engineering.

[95]  Klaus-Robert Müller,et al.  The Berlin Brain-Computer Interface: Accurate performance from first-session in BCI-naive subjects , 2008, IEEE Transactions on Biomedical Engineering.

[96]  Darren Price,et al.  Investigating the electrophysiological basis of resting state networks using magnetoencephalography , 2011, Proceedings of the National Academy of Sciences.

[97]  Bin He,et al.  Cortical Imaging of Event-Related (de)Synchronization During Online Control of Brain-Computer Interface Using Minimum-Norm Estimates in Frequency Domain , 2008, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[98]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[99]  Gerwin Schalk,et al.  Brain–computer interfacing based on cognitive control , 2010, Annals of neurology.