PBC-based pulse stabilization of periodic orbits

Abstract We investigate prediction based schemes to stabilize periodic solutions to potentially chaotic systems of periodic difference equations using pulses at times being a multiple of the period. By introducing the concept of a stability domain , we obtain precise information on the possibility to stabilize given solutions, to avoid destabilizing bifurcations, as well as on the magnitude of the required control.

[1]  Ömer Morgül,et al.  On the stabilization of periodic orbits for discrete time chaotic systems , 2005 .

[2]  Daniel Franco,et al.  Global stabilization of fixed points using predictive control. , 2010, Chaos.

[3]  Christian Pötzsche Bifurcations in a periodic discrete-time environment , 2013 .

[4]  Kestutis Pyragas Control of chaos via an unstable delayed feedback controller. , 2001, Physical review letters.

[5]  Toshimitsu Ushio,et al.  Prediction-based control of chaos , 1999 .

[6]  Y. G. Sficas,et al.  The dynamics of some discrete population models , 1991 .

[7]  Periodic points and stability in Clark's delayed recruitment model , 2008 .

[8]  A. J. Scholl,et al.  NON‐ARCHIMEDEAN ANALYSIS (Grundlehren der mathematischen Wissenschaften 261) , 1986 .

[9]  Wayne M. Getz,et al.  A Hypothesis Regarding the Abruptness of Density Dependence and the Growth Rate of Populations , 1996 .

[10]  Elena Braverman,et al.  Global stabilization of periodic orbits using a proportional feedback control with pulses , 2012 .

[11]  William L. Ditto,et al.  Techniques for the control of chaos , 1995 .

[12]  T. Bellows The Descriptive Properties of Some Models for Density Dependence , 1981 .

[13]  Boris T. Polyak,et al.  Stabilizing Chaos with Predictive Control , 2005 .

[14]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[15]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[16]  H. G. Schuster,et al.  CONTROL OF CHAOS BY OSCILLATING FEEDBACK , 1997 .

[17]  E Schöll,et al.  Control of unstable steady states by time-delayed feedback methods. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Eduardo Liz,et al.  Harvesting, census timing and ''hidden'' hydra effects , 2013 .

[19]  Elena Braverman,et al.  On stabilization of equilibria using predictive control with and without pulses , 2012, Comput. Math. Appl..

[20]  Eduardo Liz,et al.  Global stability and bifurcations in a delayed discrete population model , 2009 .