Enzymatic degradation of model cellulose films.

[1]  J. Niemantsverdriet,et al.  Novel method for preparing cellulose model surfaces by spin coating , 2003 .

[2]  Rita Casadio,et al.  Transglutaminases: nature's biological glues. , 2002, The Biochemical journal.

[3]  L. Wågberg,et al.  Model films of cellulose: I. Method development and initial results , 2002 .

[4]  M. Rabinovich,et al.  The Structure and Mechanism of Action of Cellulolytic Enzymes , 2002, Biochemistry (Moscow).

[5]  A. Gast,et al.  Protease adsorption and reaction on an immobilized substrate surface , 2002 .

[6]  O. Shoseyov,et al.  Recombinant cellulose crosslinking protein: a novel paper-modification biomaterial , 2002 .

[7]  Christiane Wertz,et al.  Fibrinogen Adsorption on Hydrophilic and Hydrophobic Surfaces: Geometrical and Energetic Aspects of Interfacial Relaxations , 2002 .

[8]  R. Brown,et al.  "Nematic ordered cellulose": a concept of glucan chain association. , 2001, Biomacromolecules.

[9]  M. Malmsten,et al.  Proteolytic degradation of oral biofilms in vitro and in vivo: potential of proteases originating from Euphausia superba for plaque control. , 2001, European journal of oral sciences.

[10]  Dirk W. Schubert,et al.  Effect of a bell-shaped cover in spin coating process on final film thickness , 2001 .

[11]  M. Malmsten,et al.  Ellipsometry and TIRF studies of enzymatic degradation of interfacial proteinaceous layers , 2001 .

[12]  B. Henrissat,et al.  Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose. , 2001, Biotechnology and bioengineering.

[13]  Malmsten,et al.  Immobilization of trypsin on porous glycidyl methacrylate beads: effects of polymer hydrophilization. , 2000, Colloids and surfaces. B, Biointerfaces.

[14]  Y. Hong,et al.  Ionic strength effect on adsorption of cellobiohydrolases I and II on microcrystalline cellulose , 2000, Biotechnology Letters.

[15]  M. Bhat,et al.  Cellulases and related enzymes in biotechnology. , 2000, Biotechnology advances.

[16]  A. Doucette,et al.  Protein concentration and enzyme digestion on microbeads for MALDI-TOF peptides mass mapping of proteins from dilute solutions. , 2000, Analytical chemistry.

[17]  J. Buchert,et al.  Trichoderma reesei cellulases and their core domains in the hydrolysis and modification of chemical pulp , 2000 .

[18]  M. Haas,et al.  Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches , 2000 .

[19]  G. Pettersson,et al.  A critical review of cellobiose dehydrogenases. , 2000, Journal of biotechnology.

[20]  B. Evans,et al.  The mechanism of cellulase action on cotton fibers: evidence from atomic force microscopy. , 2000, Ultramicroscopy.

[21]  M. Rutland,et al.  Surface Forces in Aqueous Polyvinylamine Solutions. 2. Interactions between Glass and Cellulose , 2000 .

[22]  A. Donald,et al.  Contact Angle Measurements on Fibers in the Environmental Scanning Electron Microscope , 1999 .

[23]  J. Buchert,et al.  Adsorption of hemicellulases onto bleached kraft fibers , 1999 .

[24]  F. Tjerneld,et al.  Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. , 1998, Biotechnology and bioengineering.

[25]  Martin Malmsten,et al.  Biopolymers at Interfaces , 1998 .

[26]  K. Ozaki,et al.  Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures , 1998, Extremophiles.

[27]  J. Buchert,et al.  Adsorption of a Trichoderma reesei endoglucanase and cellobiohydrolase onto bleached Kraft fibres , 1997, Cellulose.

[28]  M. Stuart,et al.  Polymer adsorption kinetics: effects of supply rate. , 1997 .

[29]  Tuula T. Teeri,et al.  The roles and function of cellulose-binding domains , 1997 .

[30]  John N. Saddler,et al.  Physical characterization of enzymatically modified Kraft pulp fibers , 1997 .

[31]  M. Schülein Enzymatic properties of cellulases from Humicola insolens. , 1997, Journal of biotechnology.

[32]  H. Motschmann,et al.  Description of a single modular optical setup for ellipsometry, surface plasmons, waveguide modes, and their corresponding imaging techniques including Brewster angle microscopy , 1997 .

[33]  Holmberg,et al.  Surface Force Studies of Langmuir-Blodgett Cellulose Films , 1997, Journal of colloid and interface science.

[34]  J. V. Eerden,et al.  Scanning force microscopy of cholesterol multilayers prepared with the spin-coating technique , 1996 .

[35]  B. Henrissat,et al.  Dynamic light scattering study of the two‐domain structure of Humicola insolens endoglucanase V , 1995, FEBS letters.

[36]  G. Carlsson,et al.  Surface characterization of unbleached kraft pulps by means of ESCA , 1994 .

[37]  M. Schaub,et al.  Ultrathin films of cellulose on silicon wafers , 1993 .

[38]  J. Vincent,et al.  Krill Enzymes , 1991, International journal of dermatology.

[39]  J. Kop,et al.  The role of intrinsic binding rate and transport rate in the adsorption of prothrombin, albumin, and fibrinogen to phospholipid bilayers , 1986 .

[40]  H C Hemker,et al.  The adsorption of prothrombin to phosphatidylserine multilayers quantitated by ellipsometry. , 1983, The Journal of biological chemistry.

[41]  A. Sarymsakov,et al.  Reaction of Microcrystalline Cellulose with Water , 2004, Chemistry of Natural Compounds.

[42]  F. Tjerneld,et al.  Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B, and Cel45A from Humicola insolens and Cel7B, Cel12A and Cel45Acore from Trichoderma reesei. , 2002, Biopolymers.

[43]  Peter A. Williams,et al.  Cellulosic pulps, fibres and materials , 2000 .

[44]  U. Zoller,et al.  Handbook of detergents , 1999 .

[45]  P. Skagerlind,et al.  Glucoside ester synthesis in microemulsions catalyzed by Candida antarctica component B lipase , 1997 .

[46]  R. Azzam,et al.  Ellipsometry and polarized light : North Holland, Amsterdam, 1987 (ISBN 0-444-87016-4). xvii + 539 pp. Price Dfl. 75.00. , 1987 .