Partial synchronization: from symmetry towards stability

[1]  George W. Polites,et al.  An introduction to the theory of groups , 1968 .

[2]  J. Salz,et al.  Synchronization Systems in Communication and Control , 1973, IEEE Trans. Commun..

[3]  V. Torre,et al.  A theory of synchronization of heart pace-maker cells. , 1976, Journal of theoretical biology.

[4]  S. Smale,et al.  A Mathematical Model of Two Cells Via Turing’s Equation , 1976 .

[5]  A. Winfree The geometry of biological time , 1991 .

[6]  Ilʹi︠a︡ Izrailevich Blekhman,et al.  Synchronization in science and technology , 1988 .

[7]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[8]  A. Zinober Matrices: Methods and Applications , 1992 .

[9]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[10]  A. Isidori,et al.  Asymptotic stabilization of minimum phase nonlinear systems , 1991 .

[11]  A. Isidori,et al.  Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems , 1991 .

[12]  Tambe,et al.  Driving systems with chaotic signals. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[13]  A. B. Rami Shani,et al.  Matrices: Methods and Applications , 1992 .

[14]  Spiegel,et al.  On-off intermittency: A mechanism for bursting. , 1993, Physical review letters.

[15]  S H Strogatz,et al.  Coupled oscillators and biological synchronization. , 1993, Scientific American.

[16]  G. Leonov,et al.  Frequency-Domain Methods for Nonlinear Analysis: Theory and Applications , 1996 .

[17]  Nikolai F. Rulkov,et al.  Images of synchronized chaos: Experiments with circuits. , 1996, Chaos.

[18]  Leon O. Chua,et al.  On a conjecture regarding the synchronization in an array of linearly coupled dynamical systems , 1996 .

[19]  Ott,et al.  Optimal periodic orbits of chaotic systems occur at low period. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Ian Stewart,et al.  Coupled cells with internal symmetry: I. Wreath products , 1996 .

[21]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[22]  I. Stewart,et al.  From attractor to chaotic saddle: a tale of transverse instability , 1996 .

[23]  Alexander L. Fradkov,et al.  THE FREQUENCY THEOREM (KALMAN-YAKUBOVICH LEMMA) IN CONTROL THEORY , 1996 .

[24]  Alexander L. Fradkov,et al.  On self-synchronization and controlled synchronization , 1997 .

[25]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[26]  David J. Hill,et al.  Exponential Feedback Passivity and Stabilizability of Nonlinear Systems , 1998, Autom..

[27]  A. Y. Pogromski,et al.  Passivity based design of synchronizing systems , 1998 .

[28]  H. Nijmeijer,et al.  Cooperative oscillatory behavior of mutually coupled dynamical systems , 2001 .

[29]  Nancy Kopell,et al.  Networks of neurons as dynamical systems: from geometry to biophysics , 1998 .

[30]  Chen Yangzhou,et al.  Frequency Theorem (Kalman-Yakubovich Lemma)in Control Theory , 1998 .

[31]  Matthew Nicol,et al.  On the unfolding of a blowout bifurcation , 1998 .

[32]  CHANGES IN THE DYNAMICS OF CARDIOMYOCYTE BEATING IN VITRO UPON AN INCREASEIN THE NUMBER OF SYNCHRONIZED CELLS , 1998 .

[33]  L. Pecora Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems , 1998 .

[34]  Tatsuo Itoh,et al.  Progress in active integrated antennas and their applications , 1998 .

[35]  David J. Hill,et al.  Strict Quasipassivity and Ultimate Boundedness for Nonlinear Control Systems , 1998 .

[36]  T. Glad,et al.  On Diffusion Driven Oscillations in Coupled Dynamical Systems , 1999 .

[37]  L. Dussopt,et al.  Coupled oscillator array generating circular polarization [active antenna] , 1999 .

[38]  Yunhui Liu,et al.  Cooperation control of multiple manipulators with passive joints , 1999, IEEE Trans. Robotics Autom..

[39]  H. Nijmeijer,et al.  Coordination of two robot manipulators based on position measurements only , 2001 .

[40]  Vladimir belykh,et al.  Invariant manifolds and cluster synchronization in a family of locally coupled map lattices , 2000 .

[41]  Belykh,et al.  Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  Ljupco Kocarev,et al.  A unifying definition of synchronization for dynamical systems. , 1998, Chaos.

[43]  Erik Mosekilde,et al.  Loss of synchronization in coupled Rössler systems , 2001 .

[44]  S Boccaletti,et al.  Unifying framework for synchronization of coupled dynamical systems. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  V N Belykh,et al.  Cluster synchronization modes in an ensemble of coupled chaotic oscillators. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[47]  Peter Swinnerton-Dyer,et al.  Bounds for trajectories of the Lorenz equations: an illustration of how to choose Liapunov functions , 2001 .

[48]  H. Cerdeira,et al.  Partial synchronization and spontaneous spatial ordering in coupled chaotic systems. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Erik Mosekilde,et al.  Partial synchronization and clustering in a system of diffusively coupled chaotic oscillators , 2001 .

[50]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[51]  Warwick Tucker,et al.  Foundations of Computational Mathematics a Rigorous Ode Solver and Smale's 14th Problem , 2022 .

[52]  P. McClintock Synchronization:a universal concept in nonlinear science , 2003 .

[53]  Charles M. Gray,et al.  Synchronous oscillations in neuronal systems: Mechanisms and functions , 1994, Journal of Computational Neuroscience.