Changes in rabbit corneal epithelial membrane permeability caused by locally applied Pseudomonas aeruginosa cytotoxin: a microfluorometric examination in vivo

[1]  M. Refojo,et al.  Pseudomonas attachment to low-water and high-water, ionic and nonionic, new and rabbit-worn soft contact lenses. , 1991, Investigative ophthalmology & visual science.

[2]  S. Klotz,et al.  Contact lens wear enhances adherence of Pseudomonas aeruginosa and binding of lectins to the cornea. , 1990, Cornea.

[3]  D. Bruckner,et al.  Microbial contamination of contact lens care systems. , 1987, American journal of ophthalmology.

[4]  K. Polse,et al.  Corneal acidosis during contact lens wear: effects of hypoxia and CO2. , 1987, Investigative ophthalmology & visual science.

[5]  M L Graber,et al.  Characteristics of fluoroprobes for measuring intracellular pH. , 1986, Analytical biochemistry.

[6]  E. Cohen,et al.  Changing trends in contact lens associated corneal ulcers: an overview of 116 cases. , 1986, The CLAO journal : official publication of the Contact Lens Association of Ophthalmologists, Inc.

[7]  A. Thaer,et al.  Mikroskopische Untersuchung des Korneaepithels auf der Grundlage des intrazellulären Umsatzes fluorogener Substrate , 1985 .

[8]  A. Thaer,et al.  [Microscopic study of the corneal epithelium based on intracellular turnover of fluorogenic substrates]. , 1985, Klinische Monatsblatter fur Augenheilkunde.

[9]  A. Laties,et al.  Carboxyfluorescein. A probe of the blood-ocular barriers with lower membrane permeability than fluorescein. , 1982, Archives of ophthalmology.

[10]  A. Kreger,et al.  Purification of Pseudomonas aeruginosa proteases and microscopic characterization of pseudomonal protease-induced rabbit corneal damage , 1978, Infection and immunity.

[11]  A. Thaer,et al.  Micro fluorometric binding studies of fluorescein-albumin conjugates and determination of fluorescein-protein conjugates in single fibroblasts. , 1972, Analytical biochemistry.

[12]  W. Culbertson,et al.  Granular epithelial keratopathy as an unusual manifestation of Pseudomonas keratitis associated with extended-wear soft contact lenses. , 1990, American journal of ophthalmology.

[13]  A. Thaer,et al.  Fluorogenic Substrate Techniques as Applied to the Noninvasive Diagnosis of the Living Rabbit and Human Cornea , 1990 .

[14]  F. Lutz,et al.  Pseudomonas aeruginosa cytotoxin: the influence of sphingomyelin on binding and cation permeability increase in mammalian erythrocytes. , 1989, Toxicon : official journal of the International Society on Toxinology.

[15]  K. Failing,et al.  Cytotoxic protein from Pseudomonas aeruginosa: formation of hydrophilic pores in Ehrlich ascites tumor cells and effect on cell viability. , 1987, Toxicon : official journal of the International Society on Toxinology.

[16]  B. Holden,et al.  Hydrogel contact lenses impede carbon dioxide efflux from the human cornea. , 1987, Current eye research.

[17]  F. Lutz Interaction of Pseudomonas aeruginosa cytotoxin with plasma membranes from Ehrlich ascites tumor cells. , 1986, Naunyn-Schmiedeberg's archives of pharmacology.

[18]  B. Iglewski,et al.  Microscopic Characterization ofOcular DamageProducedby Pseudomonas aeruginosa ToxinA , 1981 .

[19]  Hyndiuk Ra Experimental Pseudomonas keratitis. , 1981 .

[20]  F. Lutz Purification of a cytotoxic protein from Pseudomonas aeruginosa. , 1979, Toxicon : official journal of the International Society on Toxinology.

[21]  M. Sernetz Microfluorometric Investigations on the Intracellular Turnover of Fluorogenic Substrates , 1973 .