Before Förster. Initial excitation in photosynthetic light harvesting† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc01888c

Fluorescence detected double quantum coherence 2D spectroscopy reveals strong correlation between weakly coupled pigment pools directly after absorption of light before the Förster transfer regime sets in.

[1]  Christian Strüber,et al.  Coherent Two-Dimensional Nanoscopy , 2011, Science.

[2]  R. Silbey,et al.  Coherence in the B800 ring of purple bacteria LH2. , 2006, Physical review letters.

[3]  K. B. Whaley,et al.  Using coherence to enhance function in chemical and biophysical systems , 2017, Nature.

[4]  Gregory S. Engel,et al.  Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2) , 2012, Proceedings of the National Academy of Sciences.

[5]  Graham R. Fleming,et al.  On the Mechanism of Light Harvesting in Photosynthetic Purple Bacteria: B800 to B850 Energy Transfer , 2000 .

[6]  V. Sundström,et al.  Microscopic Theory of Exciton Annihilation: Application to the LH2 Antenna System , 2001 .

[7]  A. Wacker,et al.  Two-dimensional action spectroscopy of excitonic systems : Explicit simulation using a phase-modulation technique , 2017 .

[8]  Gregory D Scholes,et al.  Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy , 2016, Scientific Reports.

[9]  Niklas Christensson,et al.  Double-quantum two-dimensional electronic spectroscopy of a three-level system: Experiments and simulations. , 2010, The Journal of chemical physics.

[10]  D. Zigmantas,et al.  Vibrational vs. electronic coherences in 2D spectrum of molecular systems , 2012, 1201.2753.

[11]  Alejandro Perdomo-Ortiz,et al.  Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2D fluorescence spectroscopy. , 2012, The journal of physical chemistry. B.

[12]  Gregory D Scholes,et al.  B800-B850 coherence correlates with energy transfer rates in the LH2 complex of photosynthetic purple bacteria. , 2015, Physical chemistry chemical physics : PCCP.

[13]  S. Huelga,et al.  Quantum Redirection of Antenna Absorption to Photosynthetic Reaction Centers. , 2017, The journal of physical chemistry letters.

[14]  G. Fleming,et al.  Calculation of Couplings and Energy-Transfer Pathways between the Pigments of LH2 by the ab Initio Transition Density Cube Method , 1998 .

[15]  N. W. Isaacs,et al.  Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria , 1995, Nature.

[16]  Vladimir I. Novoderezhkin,et al.  Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion , 2014, Nature Physics.

[17]  Peifang Tian,et al.  Femtosecond Phase-Coherent Two-Dimensional Spectroscopy , 2003, Science.

[18]  D. Jonas Two-dimensional femtosecond spectroscopy. , 2003, Annual review of physical chemistry.

[19]  Alán Aspuru-Guzik,et al.  Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy , 2011, Proceedings of the National Academy of Sciences.

[20]  E. Grant,et al.  Delocalized excitons and interaction effects in extremely dilute thermal ensembles , 2018, Physical chemistry chemical physics : PCCP.

[21]  T. Brixner,et al.  Fluorescence-Detected Two-Quantum and One-Quantum-Two-Quantum 2D Electronic Spectroscopy. , 2018, The journal of physical chemistry letters.

[22]  V. Tiwari,et al.  Simulating Fluorescence-Detected Two-Dimensional Electronic Spectroscopy of Multichromophoric Systems , 2018, The journal of physical chemistry. B.

[23]  R. Leonelli,et al.  Incoherent population mixing contributions to phase-modulation two-dimensional coherent excitation spectra. , 2017, The Journal of chemical physics.

[24]  Tõnu Pullerits,et al.  Using fluorescence detected two-dimensional spectroscopy to investigate initial exciton delocalization between coupled chromophores. , 2018, The Journal of chemical physics.

[25]  Graham R Fleming,et al.  Two-dimensional electronic spectroscopy of the B800–B820 light-harvesting complex , 2006, Proceedings of the National Academy of Sciences.

[26]  Klaus Schulten,et al.  Pigment Organization and Transfer of Electronic Excitation in the Photosynthetic Unit of Purple Bacteria , 1997 .

[27]  V. Sundström,et al.  Temperature Dependence of Excitation Transfer in LH2 of Rhodobacter sphaeroides , 1997 .

[28]  R. Cogdell,et al.  Origin of the Two Bands in the B800 Ring and Their Involvement in the Energy Transfer Network of Allochromatium vinosum. , 2018, The journal of physical chemistry letters.

[29]  Andrew H Marcus,et al.  Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation. , 2007, The Journal of chemical physics.

[30]  Graham R Fleming,et al.  Lessons from nature about solar light harvesting. , 2011, Nature chemistry.

[31]  Tõnu Pullerits,et al.  Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell , 2014, Nature Communications.

[32]  S. Mukamel Communication: The origin of many-particle signals in nonlinear optical spectroscopy of non-interacting particles. , 2016, The Journal of chemical physics.

[33]  Edward A. Codling,et al.  Random walk models in biology , 2008, Journal of The Royal Society Interface.

[34]  V. Sundström,et al.  In vitro self-assembly of the light harvesting pigment-protein LH2 revealed by ultrafast spectroscopy and electron microscopy. , 2004, Biophysical journal.

[35]  T. Mančal,et al.  Signatures of Exciton Delocalization and Exciton-Exciton Annihilation in Fluorescence-Detected Two-Dimensional Coherent Spectroscopy. , 2018, The journal of physical chemistry letters.

[36]  S. Mukamel,et al.  Coherent multidimensional optical probes for electron correlations and exciton dynamics: from NMR to X-rays. , 2009, Accounts of chemical research.

[37]  Viktor Öwall,et al.  Generalized lock-in amplifier for precision measurement of high frequency signals. , 2013, The Review of scientific instruments.

[38]  James Barber,et al.  Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement , 2011, Science.

[39]  E. Sargent,et al.  Photovoltaic concepts inspired by coherence effects in photosynthetic systems. , 2016, Nature materials.

[40]  C. Rudin,et al.  A combinatorial strategy for treating KRAS mutant lung cancer , 2016, Nature.

[41]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[42]  V. Sundström,et al.  Exciton Delocalization Length in the B850 Antenna of Rhodobacter sphaeroides , 1996 .

[43]  Leonas Valkunas,et al.  Vibronic coherence in oxygenic photosynthesis. , 2014, Nature chemistry.

[44]  Vivek Tiwari,et al.  Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria , 2018, Nature Communications.