Strange non-chaotic attractor in a quasiperiodically forced circle map

Abstract We show that in the quasiperiodically forced circle map strange non-chaotic attractors can appear for non-linearities far from the border of chaos. The destruction of a two-frequency quasiperiodic torus connected with the appearance of a strange non-chaotic attractor is described in detail. This strange non-chaotic attractor is characterized by logarithmically slow diffusion of the phase. It is shown that in this regime the high-order phase-locking states disappear and the rotation number varies rather smoothly with the parameters.

[1]  Ott,et al.  Experimental observation of a strange nonchaotic attractor. , 1990, Physical review letters.

[2]  J. Heagy,et al.  The birth of strange nonchaotic attractors , 1994 .

[3]  J. Yorke,et al.  Strange attractors that are not chaotic , 1984 .

[4]  Bulsara,et al.  Observation of a strange nonchaotic attractor in a multistable potential. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[5]  Thomas M. Antonsen,et al.  Quasiperiodically forced dynamical systems with strange nonchaotic attractors , 1987 .

[6]  Mingzhou Ding,et al.  Dimensions of strange nonchaotic attractors , 1989 .

[7]  Ott,et al.  Strange nonchaotic attractors of the damped pendulum with quasiperiodic forcing. , 1987, Physical review. A, General physics.

[8]  J. Stark,et al.  Locating bifurcations in quasiperiodically forced systems , 1995 .

[9]  Block,et al.  Calculation of "Cantori" , 1986, Physical review. A, General physics.

[10]  S. Aubry,et al.  The discrete Frenkel-Kontorova model and its extensions: I. Exact results for the ground-states , 1983 .

[11]  M. R. Herman Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .

[12]  Grebogi,et al.  Evolution of attractors in quasiperiodically forced systems: From quasiperiodic to strange nonchaotic to chaotic. , 1989, Physical review. A, General physics.

[13]  Recent Developments in Mathematical Physics , 1987 .

[14]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[15]  Ott,et al.  Quasiperiodically forced damped pendula and Schrödinger equations with quasiperiodic potentials: Implications of their equivalence. , 1985, Physical review letters.

[16]  Arkady Pikovsky,et al.  Correlations and spectra of strange non-chaotic attractors , 1994 .

[17]  A. Crisanti,et al.  Products of random matrices in statistical physics , 1993 .

[18]  F. Takens,et al.  Mixed spectra and rotational symmetry , 1993 .

[19]  Li,et al.  Fractal dimension of cantori. , 1986, Physical review letters.

[20]  Ulrike Feudel,et al.  Characterizing strange nonchaotic attractors. , 1995, Chaos.

[21]  P. Grassberger,et al.  Scaling laws for invariant measures on hyperbolic and nonhyperbolic atractors , 1988 .

[22]  Tomas Bohr,et al.  Transition to chaos by interaction of resonances in dissipative systems. I: Circle maps , 1984 .