Strange non-chaotic attractor in a quasiperiodically forced circle map
暂无分享,去创建一个
[1] Ott,et al. Experimental observation of a strange nonchaotic attractor. , 1990, Physical review letters.
[2] J. Heagy,et al. The birth of strange nonchaotic attractors , 1994 .
[3] J. Yorke,et al. Strange attractors that are not chaotic , 1984 .
[4] Bulsara,et al. Observation of a strange nonchaotic attractor in a multistable potential. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[5] Thomas M. Antonsen,et al. Quasiperiodically forced dynamical systems with strange nonchaotic attractors , 1987 .
[6] Mingzhou Ding,et al. Dimensions of strange nonchaotic attractors , 1989 .
[7] Ott,et al. Strange nonchaotic attractors of the damped pendulum with quasiperiodic forcing. , 1987, Physical review. A, General physics.
[8] J. Stark,et al. Locating bifurcations in quasiperiodically forced systems , 1995 .
[9] Block,et al. Calculation of "Cantori" , 1986, Physical review. A, General physics.
[10] S. Aubry,et al. The discrete Frenkel-Kontorova model and its extensions: I. Exact results for the ground-states , 1983 .
[11] M. R. Herman. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .
[12] Grebogi,et al. Evolution of attractors in quasiperiodically forced systems: From quasiperiodic to strange nonchaotic to chaotic. , 1989, Physical review. A, General physics.
[13] Recent Developments in Mathematical Physics , 1987 .
[14] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[15] Ott,et al. Quasiperiodically forced damped pendula and Schrödinger equations with quasiperiodic potentials: Implications of their equivalence. , 1985, Physical review letters.
[16] Arkady Pikovsky,et al. Correlations and spectra of strange non-chaotic attractors , 1994 .
[17] A. Crisanti,et al. Products of random matrices in statistical physics , 1993 .
[18] F. Takens,et al. Mixed spectra and rotational symmetry , 1993 .
[19] Li,et al. Fractal dimension of cantori. , 1986, Physical review letters.
[20] Ulrike Feudel,et al. Characterizing strange nonchaotic attractors. , 1995, Chaos.
[21] P. Grassberger,et al. Scaling laws for invariant measures on hyperbolic and nonhyperbolic atractors , 1988 .
[22] Tomas Bohr,et al. Transition to chaos by interaction of resonances in dissipative systems. I: Circle maps , 1984 .