Multi-parameter Tikhonov regularization — An augmented approach

We study multi-parameter regularization (multiple penalties) for solving linear inverse problems to promote simultaneously distinct features of the sought-for objects. We revisit a balancing principle for choosing regularization parameters from the viewpoint of augmented Tikhonov regularization, and derive a new parameter choice strategy called the balanced discrepancy principle. A priori and a posteriori error estimates are provided to theoretically justify the principles, and numerical algorithms for efficiently implementing the principles are also provided. Numerical results on deblurring are presented to illustrate the feasibility of the balanced discrepancy principle.

[1]  S. Osher,et al.  Convergence rates of convex variational regularization , 2004 .

[2]  Bangti Jin,et al.  Augmented Tikhonov regularization , 2009 .

[3]  Bangti Jin,et al.  Multi-Parameter Tikhonov Regularization , 2011, ArXiv.

[4]  Shuai Lu,et al.  Multi-parameter regularization and its numerical realization , 2011, Numerische Mathematik.

[5]  E. Miller,et al.  Efficient determination of multiple regularization parameters in a generalized L-curve framework , 2002 .

[6]  Peiliang Xu,et al.  Multiple Parameter Regularization: Numerical Solutions and Applications to the Determination of Geopotential from Precise Satellite Orbits , 2006 .

[7]  P. Mathé The Lepskii principle revisited , 2006 .

[8]  Jie Sun,et al.  Global convergence of a two-parameter family of conjugate gradient methods without line search , 2002 .

[9]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[10]  O. Scherzer,et al.  A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators , 2007 .

[11]  Ioannis M. Stephanakis Regularized image restoration in multiresolution spaces , 1997 .

[12]  Bangti Jin,et al.  Heuristic Parameter-Choice Rules for Convex Variational Regularization Based on Error Estimates , 2010, SIAM J. Numer. Anal..

[13]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[14]  Kazufumi Ito,et al.  A Regularization Parameter for Nonsmooth Tikhonov Regularization , 2011, SIAM J. Sci. Comput..

[15]  K. Kunisch,et al.  BV-type regularization methods for convoluted objects with edge, flat and grey scales , 2000 .

[16]  Lixin Shen,et al.  Multi-Parameter Regularization Methods for High-Resolution Image Reconstruction With Displacement Errors , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[18]  Sergei V. Pereverzev,et al.  Discrepancy curves for multi-parameter regularization , 2010 .

[19]  Vitalii P. Tanana,et al.  Theory of Linear Ill-Posed Problems and its Applications , 2002 .

[20]  Zhongying,et al.  MULTI-PARAMETER TIKHONOV REGULARIZATION FOR LINEAR ILL-POSED OPERATOR EQUATIONS , 2008 .