Construction of Topologically Correct and Manifold Isosurfaces

We present a simple method to describe the geometry and topologically classify the intersection of level sets of trilinear interpolants with a reference unit cell. The solutions of three quadratic equations are used to correctly triangulate the level set within the cell satisfying the conditions imposed by the asymptotic decider. This way the triangulation of isosurfaces across cells borders is manifold and topologically correct. The algorithm presented is intuitive and easy to implement.

[1]  Hong Yi,et al.  A survey of the marching cubes algorithm , 2006, Comput. Graph..

[2]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[3]  Ken Brodlie,et al.  Improving the Robustness and Accuracy of the Marching Cubes Algorithm for Isosurfacing , 2003, IEEE Trans. Vis. Comput. Graph..

[4]  B. Natarajan On generating topologically consistent isosurfaces from uniform samples , 1994, The Visual Computer.

[5]  Robert Michael Kirby,et al.  Verifiable Visualization for Isosurface Extraction , 2009, IEEE Transactions on Visualization and Computer Graphics.

[6]  Micha Sharir,et al.  Filling gaps in the boundary of a polyhedron , 1995, Comput. Aided Geom. Des..

[7]  Scott Schaefer,et al.  Dual marching cubes: primal contouring of dual grids , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[8]  Dinesh Manocha,et al.  Feature-sensitive subdivision and isosurface reconstruction , 2003, IEEE Visualization, 2003. VIS 2003..

[9]  Sergey V. Matveyev Marching cubes: surface complexity measure , 1999, Electronic Imaging.

[10]  Leif Kobbelt,et al.  Isosurface reconstruction with topology control , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[11]  PETER PAUKOWITSCH Fundamental ideas for computer-supported descriptive geometry , 1988, Comput. Graph..

[12]  Roberto Scopigno,et al.  A modified look-up table for implicit disambiguation of Marching Cubes , 1994, The Visual Computer.

[13]  Jane Wilhelms,et al.  Topological considerations in isosurface generation , 1994, TOGS.

[14]  Martin J. Dürst,et al.  Re , 1988 .

[15]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..

[16]  David Eppstein,et al.  On triangulating three-dimensional polygons , 1996, SCG '96.

[17]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[18]  Wei Hong,et al.  Dual contouring with topology-preserving simplification using enhanced cell representation , 2004, IEEE Visualization 2004.

[19]  E Chernyaev,et al.  Marching cubes 33 : construction of topologically correct isosurfaces , 1995 .

[20]  Weijun Liu,et al.  A Robust and Topological Correct Marching Cube Algorithm Without Look-Up Table , 2005, The Fifth International Conference on Computer and Information Technology (CIT'05).

[21]  Gregory M. Nielson,et al.  On Marching Cubes , 2003, IEEE Trans. Vis. Comput. Graph..

[22]  Thomas Lewiner,et al.  Efficient Implementation of Marching Cubes' Cases with Topological Guarantees , 2003, J. Graphics, GPU, & Game Tools.

[23]  Cláudio T. Silva,et al.  Practical considerations on Marching Cubes 33 topological correctness , 2013, Comput. Graph..

[24]  Tao Ju,et al.  Manifold Dual Contouring , 2007, IEEE Transactions on Visualization and Computer Graphics.

[25]  Paolo Cignoni,et al.  Reconstruction of topologically correct and adaptive trilinear isosurfaces , 2000, Comput. Graph..

[26]  Valerio Pascucci,et al.  Topology Verification for Isosurface Extraction , 2012, IEEE Transactions on Visualization and Computer Graphics.

[27]  Alexander A. Pasko,et al.  Geometric modeling in the analysis of trivariate functions , 1988, Comput. Graph..

[28]  Michael M. Kazhdan,et al.  Unconstrained isosurface extraction on arbitrary octrees , 2007, Symposium on Geometry Processing.