Anisotropic two-gap superconductivity and the absence of a Pauli paramagnetic limit in single-crystalline LaO 0.5 F 0.5 BiS 2

Ambient-pressure-grown LaO$_{0.5}$F$_{0.5}$BiS$_2$ with a superconducting transition temperature $T_{c}~\sim$3 K has a two-dimensional-like Fermi surface according to band structure calculations, suggesting a highly anisotropic normal state. By a series of electrical resistivity measurements with a magnetic field direction varying between the crystalline $c$-axis and the $ab$-plane, we present the first datasets displaying the temperature dependence of the out-of-plane upper critical field $H_{c2}^{\perp}(T)$, the in-plane upper critical field $H_{c2}^{\parallel}(T)$, as well as the angular dependence of $H_{c2}$ at fixed temperatures for ambient-pressure-grown LaO$_{0.5}$F$_{0.5}$BiS$_2$ single crystals. The anisotropy of the superconductivity, $H_{c2}^{\parallel}/H_{c2}^{\perp}$, reaches $\sim$16 on approaching 0 K, but it decreases significantly near $T_{c}$. A pronounced upward curvature of $H_{c2}^{\parallel}(T)$ is observed near $T_{c}$, which we analyze using a two-gap model. Moreover, $H_{c2}^{\parallel}(0)$ is found to exceed the Pauli paramagnetic limit, which can be understood by considering the strong spin-orbit coupling associated with Bi as well as the breaking of the local inversion symmetry at the electronically active BiS$_2$ bilayers.

[1]  T. Nakano,et al.  Superconducting gap symmetry of the BiS 2 -based superconductor Lao 0.5 F 0.5 BiSSe elucidated through specific heat measurements , 2017, 1709.05992.

[2]  T. Nakano,et al.  Upper critical field of the single crystal La(O,F)BiSe2 , 2017 .

[3]  M. Nagao,et al.  Direct evidence of hidden local spin polarization in a centrosymmetric superconductor LaO0.55 F0.45BiS2 , 2017, Nature Communications.

[4]  W. Zhou,et al.  Two-band and pauli-limiting effects on the upper critical field of 112-type iron pnictide superconductors , 2017, Scientific Reports.

[5]  Shik Shin,et al.  Unconventional Superconductivity in the BiS_{2}-Based Layered Superconductor NdO_{0.71}F_{0.29}BiS_{2}. , 2017, Physical review letters.

[6]  M. Maple,et al.  Superconducting gap structure in ambient-pressure-grown LaO0.5F0.5BiS2 , 2016, 1611.04726.

[7]  M. Maple,et al.  Upper critical magnetic field of LnO 0.5 F 0.5 BiS2 (Ln = La, Nd) superconductors at ambient and high pressure , 2016, 1611.03926.

[8]  S. Watauchi,et al.  Conventional s-Wave Superconductivity in BiS2-Based NdO0.71F0.29BiS2 Revealed by Thermal Transport Measurements , 2016, 1601.03502.

[9]  L. Schultz,et al.  High field superconducting properties of Ba(Fe1−xCox)2As2 thin films , 2015, Scientific Reports.

[10]  M. Nagao Growth and characterization of R(O,F)BiS2 (R = La, Ce, Pr, Nd) superconducting single crystals , 2015, 1511.00219.

[11]  Inho Jeon,et al.  Superconductivity in layered BiS 2 -based compounds , 2015 .

[12]  E. Artacho,et al.  Fermi surfaces and orbital polarization in superconducting CeO0.5 F0.5BiS2 revealed by angle-resolved photoemission spectroscopy , 2015, 1505.01969.

[13]  L. Pi,et al.  Superconducting properties of BiSe2-based LaO1−xFxBiSe2 single crystals , 2014, 1407.6114.

[14]  Fei Gao,et al.  Evidence for nodeless superconductivity in NdO1−xFxBiS2 (x = 0.3 and 0.5) single crystals , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  R. Miyazaki,et al.  Low-Temperature Enhancement in the Upper Critical Field of Underdoped LaO1−xFxBiS2 (x = 0.1–0.3) , 2014 .

[16]  R. Jha,et al.  Effect of hydrostatic pressures on the superconductivity of new BiS2 based REO0.5F0.5BiS2 (RE=La, Pr and Nd) superconductors , 2014, 1406.4231.

[17]  H. Shishido,et al.  Controllable Rashba spin-orbit interaction in artificially engineered superlattices involving the heavy-fermion superconductor CeCoIn5. , 2014, Physical review letters.

[18]  H. Takatsu,et al.  Stabilization of High- T c Phase of BiS 2 -Based Superconductor LaO 0.5 F 0.5 BiS 2 Using High-Pressure Synthesis , 2014, 1402.5189.

[19]  A. Zunger,et al.  Hidden spin polarization in inversion-symmetric bulk crystals , 2014, Nature Physics.

[20]  Corentin Morice,et al.  Electronic and magnetic properties of superconducting LnO1−xFxBiS2 (Ln  =  La, Ce, Pr, and Nd) from first principles , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  Xiyu Zhu,et al.  Giant superconducting fluctuation and anomalous semiconducting normal state in NdO1−xFxBi1−yS2 single crystals , 2013, 1310.0377.

[22]  S. Demura,et al.  Pressure-Induced Enhancement of Superconductivity and Structural Transition in BiS 2 -Layered LaO 1- x F x BiS 2 , 2013, 1309.4250.

[23]  M. Maple,et al.  Pressure-induced enhancement of superconductivity and suppression of semiconducting behavior in L n O 0.5 F 0.5 BiS 2 ( L n = La ,Ce) compounds , 2013, 1307.4157.

[24]  M. Maple,et al.  Superconductivity induced by electron doping in La 1-x M x OBiS 2 (M= Ti, Zr, Hf, Th) , 2013, 1303.6216.

[25]  M. Maple,et al.  Superconductivity of F-substituted LnOBiS2 (Ln=La, Ce, Pr, Nd, Yb) compounds , 2013, 1301.3932.

[26]  G. Ehlers,et al.  Crystal structure, lattice vibrations, and superconductivity of LaO 1 − x F x BiS 2 , 2012, 1212.4811.

[27]  T. Yildirim Ferroelectric soft phonons, charge density wave instability, and strong electron-phonon coupling in BiS 2 layered superconductors: A first-principles study , 2012, 1210.2418.

[28]  G. Huang,et al.  Phonon spectra and superconductivity of the BiS2-based compounds LaO1−xFxBiS2 , 2012, 1210.1743.

[29]  T. Watanabe,et al.  Evolution of superconductivity in LaO1−xFxBiS2 prepared by high-pressure technique , 2012, 1209.3846.

[30]  S. Savrasov,et al.  Electron-phonon superconductivity near charge-density-wave instability in LaO0.5F0.5BiS2: Density-functional calculations , 2012, 1208.1807.

[31]  Shruti,et al.  Appearance of superconductivity in layered LaO0.5F0.5BiS2 , 2012, 1207.6845.

[32]  Shruti,et al.  Bulk superconductivity in bismuth oxysulfide Bi4O4S3. , 2012, Journal of the American Chemical Society.

[33]  H. Shishido,et al.  Anomalous upper critical field in CeCoIn5/YbCoIn5 superlattices with a Rashba-type heavy Fermion interface. , 2012, Physical review letters.

[34]  K. Kuroki,et al.  Minimal electronic models for superconducting BiS 2 layers , 2012, 1207.3888.

[35]  S. Demura,et al.  Superconductivity in novel BiS2-based layered superconductor LaO1-xFxBiS2 , 2012, 1207.3558.

[36]  D. Maruyama,et al.  Locally Non-centrosymmetric Superconductivity in Multilayer Systems , 2011, 1111.4293.

[37]  F. Balakirev,et al.  Significant enhancement of upper critical fields by doping and strain in iron-based superconductors , 2011, 1108.5194.

[38]  M. Sigrist,et al.  Superconductivity and local noncentrosymmetricity in crystal lattices , 2011, 1108.4694.

[39]  M. Gabay,et al.  Tunable Rashba spin-orbit interaction at oxide interfaces. , 2009, Physical review letters.

[40]  D. Christen,et al.  Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields , 2008, Nature.

[41]  Marcus Tegel,et al.  Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2. , 2008, Physical review letters.

[42]  D. Christen,et al.  Very High Field Two-Band Superconductivity in LaFeAsO_0.89F_0.11 , 2008, 0804.0485.

[43]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[44]  A. Gurevich,et al.  Limits of the upper critical field in dirty two-gap superconductors , 2007, cond-mat/0701281.

[45]  A. Gurevich,et al.  Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors , 2002, cond-mat/0212129.

[46]  Carbotte,et al.  Pauli limiting of the upper critical magnetic field. , 1989, Physical review. B, Condensed matter.

[47]  Chu,et al.  Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. , 1987, Physical review letters.

[48]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[49]  M. Beasley,et al.  Critical fields, Pauli paramagnetic limiting, and material parameters ofNb3Sn andV3Si , 1979 .

[50]  M. R. Beasley,et al.  Theory of the upper critical field in layered superconductors , 1975 .

[51]  E. Helfand,et al.  Temperature and Purity Dependence of the Superconducting Critical Field, H c 2 . III. Electron Spin and Spin-Orbit Effects , 1966 .

[52]  Clogston Upper limit for the critical field in hard superconductors. [V/sub 2. 95/Ga, NbâSn,VâSi, V/sub 1. 95/ Ga] , 1962 .

[53]  B. Chandrasekhar A NOTE ON THE MAXIMUM CRITICAL FIELD OF HIGH‐FIELD SUPERCONDUCTORS , 1962 .