A new approach to simulating collisionless dark matter fluids

Recently, we have shown how current cosmological N-body codes already follow the fine grained phase-space information of the dark matter fluid. Using a tetrahedral tesselation of the three-dimensional manifold that describes perfectly cold fluids in six-dimensional phase space, the phase-space distribution function can be followed throughout the simulation. This allows one to project the distribution function into configuration space to obtain highly accurate densities, velocities, and velocity dispersions. Here, we exploit this technique to show first steps on how to devise an improved particle-mesh technique. At its heart, the new method thus relies on a piecewise linear approximation of the phase space distribution function rather than the usual particle discretisation. We use pseudo-particles that approximate the masses of the tetrahedral cells up to quadrupolar order as the locations for cloud-in-cell (CIC) deposit instead of the particle locations themselves as in standard CIC deposit. We demonstrate that this modification already gives much improved stability and more accurate dynamics of the collisionless dark matter fluid at high force and low mass resolution. We demonstrate the validity and advantages of this method with various test problems as well as hot/warm-dark matter simulations which have been known to exhibit artificial fragmentation. This completely unphysical behaviour is much reduced in the new approach. The current limitations of our approach are discussed in detail and future improvements are outlined.

[1]  G. Efstathiou,et al.  Numerical techniques for large cosmological N-body simulations , 1985 .

[2]  Volker Springel,et al.  Resolving cosmic structure formation with the Millennium-II simulation , 2009, 0903.3041.

[3]  Michael L. Norman,et al.  Achieving Extreme Resolution in Numerical Cosmology Using Adaptive Mesh Refinement: Resolving Primordial Star Formation , 2001, ACM/IEEE SC 2001 Conference (SC'01).

[4]  Zurich,et al.  The warm dark matter halo mass function below the cut-off scale , 2013, 1304.2406.

[5]  Charles Radin,et al.  Quaquaversal tilings and rotations , 1998 .

[6]  A. Ludlow,et al.  The peaks formalism and the formation of cold dark matter haloes , 2010, 1011.2493.

[7]  H. Couchman,et al.  Mesh-refined P3M - A fast adaptive N-body algorithm , 1991 .

[8]  S. White,et al.  The inner structure of ΛCDM haloes – I. A numerical convergence study , 2002, astro-ph/0201544.

[9]  J. Ostriker,et al.  Halo Formation in Warm Dark Matter Models , 2000, astro-ph/0010389.

[10]  R. Scoccimarro,et al.  Generation of vorticity and velocity dispersion by orbit crossing , 2008, 0809.4606.

[11]  R. Wechsler,et al.  Modeling Luminosity-dependent Galaxy Clustering through Cosmic Time , 2005, astro-ph/0512234.

[12]  T. Quinn,et al.  Gasoline: a flexible, parallel implementation of TreeSPH , 2003, astro-ph/0303521.

[13]  J. Centrella,et al.  Three-dimensional simulation of large-scale structure in the Universe , 1983, Nature.

[14]  Michael L. Norman,et al.  The Formation of the First Star in the Universe , 2001, Science.

[15]  P. Peebles,et al.  A model for the formation of the Local Group , 1989 .

[16]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[17]  A. Boyarsky,et al.  The haloes of bright satellite galaxies in a warm dark matter universe , 2011, 1104.2929.

[18]  An Alternative to Grids and Glasses: Quaquaversal Pre-Initial Conditions for N-Body Simulations , 2006, astro-ph/0606148.

[19]  Masayuki Umemura,et al.  DIRECT INTEGRATION OF THE COLLISIONLESS BOLTZMANN EQUATION IN SIX-DIMENSIONAL PHASE SPACE: SELF-GRAVITATING SYSTEMS , 2013 .

[20]  R. van de Weygaert,et al.  Density estimators in particle hydrodynamics DTFE versus regular SPH , 2003, astro-ph/0303071.

[21]  A. Melott,et al.  Gravitational instability with high resolution , 1989 .

[22]  Oliver Hahn,et al.  Multi-scale initial conditions for cosmological simulations , 2011, 1103.6031.

[23]  Cosmological and astrophysical parameters from the Sloan Digital Sky Survey flux power spectrum and hydrodynamical simulations of the Lyman α forest , 2005, astro-ph/0508177.

[24]  SDSS galaxy bias from halo mass-bias relation and its cosmological implications , 2004, astro-ph/0406594.

[25]  Alexander Knebe,et al.  On the effects of resolution in dissipationless cosmological simulations , 2000 .

[26]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[27]  Yannick Mellier,et al.  Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS , 2009, 0911.0053.

[28]  A. Klypin,et al.  Three-dimensional numerical model of the formation of large-scale structure in the Universe , 1983 .

[29]  S. Habib,et al.  The Cosmic Web, Multi-Stream Flows, and Tessellations , 2011, 1111.2366.

[30]  K. Dolag,et al.  Adaptive gravitational softening in gadget , 2011, 1107.2942.

[31]  Yasushi Suto,et al.  Fundamental Discreteness Limitations of Cosmological N-Body Clustering Simulations , 1997 .

[32]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[33]  Alexandroff.,et al.  Elementary concepts in Topology , 1932 .

[34]  P. Chang,et al.  Long-Term Evolution of Magnetic Turbulence in Relativistic Collisionless Shocks: Electron-Positron Plasmas , 2007, 0704.3832.

[35]  S. Shandarin,et al.  Two-dimensional simulation of the gravitational system dynamics and formation of the large-scale structure of the universe , 1980 .

[36]  E. Bertschinger SIMULATIONS OF STRUCTURE FORMATION IN THE UNIVERSE , 1998 .

[37]  Nishikanta Khandai,et al.  The Adaptive TreePM: an adaptive resolution code for cosmological N‐body simulations , 2008, 0811.4228.

[38]  S. White,et al.  Streams and caustics: the fine-grained structure of LCDM haloes , 2010, 1002.3162.

[39]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[40]  Galaxy formation: Warm dark matter, missing satellites, and the angular momentum problem , 2002, astro-ph/0210599.

[41]  Oliver Hahn,et al.  Tracing the dark matter sheet in phase space , 2011, 1111.3944.

[42]  Y. Suto,et al.  Demonstrating Discreteness and Collision Error in Cosmological N-Body Simulations of Dark Matter Gravitational Clustering , 1996, astro-ph/9609152.

[43]  Junichiro Makino Yet Another Fast Multipole Method without Multipoles-Pseudoparticle Multipole Method , 1999 .

[44]  R. Sheth,et al.  Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes , 1999, astro-ph/9907024.

[45]  J. Sommer-Larsen,et al.  Formation of Disk Galaxies: Warm Dark Matter and the Angular Momentum Problem , 1999, astro-ph/9912166.

[46]  Vlasov limit and discreteness effects in cosmological N-body simulations , 2008, 0805.1500.

[47]  Gravitational Instability in Collisionless Cosmological Pancakes , 1996, astro-ph/9610228.

[48]  Discreteness effects in simulations of hot/warm dark matter , 2007, astro-ph/0702575.

[49]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[50]  Sergei F. Shandarin,et al.  The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium , 1989 .

[51]  M. Becker,et al.  ON THE ACCURACY OF WEAK-LENSING CLUSTER MASS RECONSTRUCTIONS , 2010, 1011.1681.

[52]  Guohong Xu A new parallel N body gravity solver: TPM , 1994, astro-ph/9409021.

[53]  P. S. Aleksandrov,et al.  Elementary concepts of topology , 1961 .

[54]  Guinevere Kauffmann,et al.  Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0 , 1999 .

[55]  J. Waldvogel The Newtonian potential of homogeneous polyhedra , 1979 .

[56]  Uros Seljak,et al.  Ray-tracing Simulations of Weak Lensing by Large-Scale Structure , 1999, astro-ph/9901191.

[57]  Michael S. Warren,et al.  The cosmic code comparison project , 2007, 0706.1270.

[58]  Daniel J. Price SPLASH: An Interactive Visualisation Tool for Smoothed Particle Hydrodynamics Simulations , 2007, Publications of the Astronomical Society of Australia.

[59]  H.M.P. Couchman,et al.  Hydra: a parallel adaptive grid code , 1997 .

[60]  Joachim Stadel,et al.  Two-body relaxation in cold dark matter simulations , 2003, astro-ph/0304549.

[61]  R. Teyssier Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.