A McKean optimal transportation perspective on Feynman-Kac formulae with application to data assimilation
暂无分享,去创建一个
[1] D. Crisan,et al. Approximate McKean–Vlasov representations for a class of SPDEs , 2005, math/0510668.
[2] Tai Sing Lee,et al. Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.
[3] J. M. Lewis,et al. Dynamic Data Assimilation: A Least Squares Approach , 2006 .
[4] Marco Cuturi,et al. Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.
[5] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[6] Jeffrey L. Anderson. Localization and Sampling Error Correction in Ensemble Kalman Filter Data Assimilation , 2012 .
[7] Faming Liang,et al. Statistical and Computational Inverse Problems , 2006, Technometrics.
[8] A. Stordal,et al. Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter , 2011 .
[9] Sebastian Reich,et al. An ensemble Kalman-Bucy filter for continuous data assimilation , 2012 .
[10] T. Lelièvre,et al. Free Energy Computations: A Mathematical Perspective , 2010 .
[11] James C. Robinson,et al. Bayesian inverse problems for functions and applications to fluid mechanics , 2009 .
[12] Peter J. Bickel,et al. A Moment Matching Ensemble Filter for Nonlinear Non-Gaussian Data Assimilation , 2011 .
[13] D. Crisan,et al. Fundamentals of Stochastic Filtering , 2008 .
[14] G. Evensen. Data Assimilation: The Ensemble Kalman Filter , 2006 .
[15] Gilbert Strang,et al. Introduction to applied mathematics , 1988 .
[16] Ernst Hairer,et al. Numerical methods for evolutionary differential equations , 2010, Math. Comput..
[17] Martin Verlaan,et al. Conservation of Mass and Preservation of Positivity with Ensemble-Type Kalman Filter Algorithms , 2014 .
[18] R. Handel,et al. Can local particle filters beat the curse of dimensionality , 2013, 1301.6585.
[19] Sebastian Reich,et al. A Guided Sequential Monte Carlo Method for the Assimilation of Data into Stochastic Dynamical Systems , 2013 .
[20] I. Olkin,et al. The distance between two random vectors with given dispersion matrices , 1982 .
[21] Andrew J. Majda,et al. Filtering Complex Turbulent Systems , 2012 .
[22] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .
[23] Istvan Szunyogh,et al. A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .
[24] D. Pham. Stochastic Methods for Sequential Data Assimilation in Strongly Nonlinear Systems , 2001 .
[25] Dean S. Oliver,et al. Conditioning Permeability Fields to Pressure Data , 1996 .
[26] Istvan Szunyogh,et al. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.
[27] Eugenia Kalnay,et al. Accelerating the spin‐up of Ensemble Kalman Filtering , 2008, 0806.0180.
[28] Sean P. Meyn,et al. Feedback Particle Filter , 2013, IEEE Transactions on Automatic Control.
[29] Peter Jan van Leeuwen,et al. Efficient fully nonlinear data assimilation for geophysical fluid dynamics , 2013, Comput. Geosci..
[30] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[31] M. Hp. A class of markov processes associated with nonlinear parabolic equations. , 1966 .
[32] P. Houtekamer,et al. A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .
[33] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[34] A. Stuart,et al. MAP estimators and their consistency in Bayesian nonparametric inverse problems , 2013, 1303.4795.
[35] Simo Srkk,et al. Bayesian Filtering and Smoothing , 2013 .
[36] Brian R. Hunt,et al. Ensemble data assimilation for hyperbolic systems , 2013 .
[37] A. Chorin,et al. Implicit particle filtering for models with partial noise, and an application to geomagnetic data assimilation , 2011, 1109.3664.
[38] P. Leeuwen,et al. Nonlinear data assimilation in geosciences: an extremely efficient particle filter , 2010 .
[39] G. Evensen,et al. Analysis Scheme in the Ensemble Kalman Filter , 1998 .
[40] C. Villani. Topics in Optimal Transportation , 2003 .
[41] A. Beskos,et al. Error Bounds and Normalizing Constants for Sequential Monte Carlo in High Dimensions , 2011, 1112.1544.
[42] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[43] R. McCann. Existence and uniqueness of monotone measure-preserving maps , 1995 .
[44] Youssef M. Marzouk,et al. Bayesian inference with optimal maps , 2011, J. Comput. Phys..
[45] Kayo Ide,et al. Ensemble transform Kalman-Bucy filters , 2011 .
[46] Sebastian Reich,et al. A Gaussian‐mixture ensemble transform filter , 2011, 1102.3089.
[47] S. Cohn,et al. Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .
[48] Dean S. Oliver,et al. An Iterative EnKF for Strongly Nonlinear Systems , 2012 .
[49] Sebastian Reich,et al. A Nonparametric Ensemble Transform Method for Bayesian Inference , 2012, SIAM J. Sci. Comput..
[50] A. Owen,et al. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .
[51] C. Leith. Theoretical Skill of Monte Carlo Forecasts , 1974 .
[52] E. Süli,et al. Numerical Solution of Partial Differential Equations , 2014 .
[53] Simo Särkkä,et al. Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.
[54] James C. Robinson. Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors , 2001 .
[55] Christopher K. Wikle,et al. Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.
[56] J. Whitaker,et al. Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.
[57] Hans R. Künsch,et al. Mixture ensemble Kalman filters , 2013, Comput. Stat. Data Anal..
[58] A. Beskos,et al. Error Bounds and Normalising Constants for Sequential Monte Carlo Samplers in High Dimensions , 2014, Advances in Applied Probability.
[59] Pierre Brasseur,et al. A non-Gaussian analysis scheme using rank histograms for ensemble data assimilation , 2014 .
[60] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[61] D. Nychka. Data Assimilation” , 2006 .
[62] R. Daley. Atmospheric Data Analysis , 1991 .
[63] J. Whitaker,et al. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter , 2001 .
[64] D. Mayne,et al. Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering† , 1969 .
[65] Lewis F. Richardson,et al. Weather Prediction by Numerical Process , 1922 .
[66] Norbert Wiener,et al. Extrapolation, Interpolation, and Smoothing of Stationary Time Series, with Engineering Applications , 1949 .
[67] Dean S. Oliver,et al. On conditional simulation to inaccurate data , 1996 .
[68] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[69] A. Stuart,et al. Analysis of the 3DVAR filter for the partially observed Lorenz'63 model , 2012, 1212.4923.
[70] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[71] Marc Bocquet,et al. Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems , 2012 .
[72] Michael Werman,et al. Fast and robust Earth Mover's Distances , 2009, 2009 IEEE 12th International Conference on Computer Vision.
[73] H. McKean,et al. A CLASS OF MARKOV PROCESSES ASSOCIATED WITH NONLINEAR PARABOLIC EQUATIONS , 1966, Proceedings of the National Academy of Sciences of the United States of America.
[74] A. Doucet,et al. A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .
[75] Matthias Morzfeld,et al. A random map implementation of implicit filters , 2011, J. Comput. Phys..
[76] Jens Schröter,et al. A regulated localization scheme for ensemble‐based Kalman filters , 2012 .
[77] Massimo Bonavita,et al. On the use of EDA background error variances in the ECMWF 4D‐Var , 2012 .
[78] G. Evensen. Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .
[79] A. Lorenc,et al. Operational implementation of a hybrid ensemble/4D‐Var global data assimilation system at the Met Office , 2013 .
[80] S. Julier,et al. Which Is Better, an Ensemble of Positive–Negative Pairs or a Centered Spherical Simplex Ensemble? , 2004 .
[81] Nancy Nichols,et al. Unbiased ensemble square root filters , 2007 .
[82] Jeffrey L. Anderson. A Non-Gaussian Ensemble Filter Update for Data Assimilation , 2010 .
[83] T. Miyoshi. The Gaussian Approach to Adaptive Covariance Inflation and Its Implementation with the Local Ensemble Transform Kalman Filter , 2011 .
[84] Jeffrey L. Anderson,et al. An adaptive covariance inflation error correction algorithm for ensemble filters , 2007 .
[85] P. Kitanidis. Quasi‐Linear Geostatistical Theory for Inversing , 1995 .
[86] Matthias Morzfeld,et al. Implicit particle filters for data assimilation , 2010, 1005.4002.
[87] P. L. Houtekamer,et al. Ensemble Kalman filtering , 2005 .
[88] S. Reich. A dynamical systems framework for intermittent data assimilation , 2011 .
[89] P. Bickel,et al. Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems , 2008, 0805.3034.
[90] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[91] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[92] S. Reich,et al. A localization technique for ensemble Kalman filters , 2009, 0909.1678.
[93] Colin J. Cotter,et al. Ensemble filter techniques for intermittent data assimilation , 2013 .