Dependence in Dempster-Shafer theory and probability bounds analysis*

This report summarizes methods to incorporate information (or lack of information) about inter-variable dependence into risk assessments that use Dempster-Shafer theory or probability bounds analysis to address epistemic and aleatory uncertainty. The report reviews techniques for simulating correlated variates for a given correlation measure and dependence model, computation of bounds on distribution functions under a specified dependence model, formulation of parametric and empirical dependence models, and bounding approaches that can be used when information about the intervariable dependence is incomplete. The report also reviews several of the most pervasive and dangerous myths among risk analysts about dependence in probabilistic models.

[1]  M. J. Frank,et al.  Best-possible bounds for the distribution of a sum — a problem of Kolmogorov , 1987 .

[2]  Samuel Kotz,et al.  Advances in probability distributions with given marginals : beyond the copulas , 1991 .

[3]  Scott Ferson,et al.  What Monte Carlo methods cannot do , 1996 .

[4]  Max Henrion,et al.  Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis , 1990 .

[5]  D. Berleant Automatically Verified Arithmetic on Probability Distributions and Intervals , 1996 .

[6]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[7]  Roger B. Nelsen,et al.  Best-possible bounds on sets of bivariate distribution functions , 2004 .

[8]  T. Modis,et al.  Experts in uncertainty , 1993 .

[9]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[10]  李幼升,et al.  Ph , 1989 .

[11]  M. Fréchet Sur les tableaux de correlation dont les marges sont donnees , 1951 .

[12]  James W. Hall,et al.  A software-supported process for assembling evidence and handling uncertainty in decision-making , 2003, Decis. Support Syst..

[13]  A. Markoff Sur une question de maximum et de minimum , 1887 .

[14]  W. Whitt Bivariate Distributions with Given Marginals , 1976 .

[15]  Ronald R. Yager,et al.  Arithmetic and Other Operations on Dempster-Shafer Structures , 1986, Int. J. Man Mach. Stud..

[16]  T. Fine,et al.  Towards a Frequentist Theory of Upper and Lower Probability , 1982 .

[17]  Hua Lee,et al.  Maximum Entropy and Bayesian Methods. , 1996 .

[18]  L Roberts Risk assessors taken to task. , 1990, Science.

[19]  Bjørnar Tessem,et al.  Interval probability propagation , 1992, Int. J. Approx. Reason..

[20]  Jon C. Helton,et al.  Treatment of Uncertainty in Performance Assessments for Complex Systems , 1994 .

[21]  Michael Oberguggenberger,et al.  Propagation of uncertainty through multivariate functions in the framework of sets of probability measures , 2004, Reliab. Eng. Syst. Saf..

[22]  James H. Lambert,et al.  When and How Can You Specify a Probability Distribution When You Don't Know Much?1.: Organized by the U.S. Environmental Protection Agency and the University of Virginia, April 18-20, 1993, Charlottesville, Virginia , 1994 .

[23]  G. Roussas A course in mathematical statistics , 1997 .

[24]  Natalie W. Harrington,et al.  Recommended distributions for exposure factors frequently used in health risk assessment. , 1994, Risk analysis : an official publication of the Society for Risk Analysis.

[25]  Ronald L. Iman,et al.  Risk methodology for geologic disposal of radioactive waste: small sample sensitivity analysis techniques for computer models, with an application to risk assessment , 1980 .

[26]  Scott Ferson,et al.  Automated quality assurance checks on model structure in ecological risk assessments , 1996 .

[27]  Convex Upper and Lower Bounds for Present Value Functions , 2001 .

[28]  Ronald Prescott Loui,et al.  Interval-Based Decisions for Reasoning Systems , 2013, UAI.

[29]  A. Neumaier Interval methods for systems of equations , 1990 .

[30]  C. Genest Frank's family of bivariate distributions , 1987 .

[31]  Scott Ferson,et al.  Constructing Probability Boxes and Dempster-Shafer Structures , 2003 .

[32]  Armando Mammino,et al.  Reliability analysis of rock mass response by means of Random Set Theory , 2000, Reliab. Eng. Syst. Saf..

[33]  Marco Scarsini,et al.  On measures of concordance , 1984 .

[34]  Paul Bratley,et al.  A guide to simulation , 1983 .

[35]  S. Ferson,et al.  Different methods are needed to propagate ignorance and variability , 1996 .

[36]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[37]  Daniel Wartenberg,et al.  Correlated Inputs in Quantitative Risk Assessment: The Effects of Distributional Shape , 1995 .

[38]  Jon C. Helton,et al.  An Approach to Sensitivity Analysis of Computer Models: Part II - Ranking of Input Variables, Response Surface Validation, Distribution Effect and Technique Synopsis , 1981 .

[39]  Robert C. Williamson,et al.  Probabilistic arithmetic. I. Numerical methods for calculating convolutions and dependency bounds , 1990, Int. J. Approx. Reason..

[40]  A. W. Kemp,et al.  Continuous Bivariate Distributions, Emphasising Applications , 1991 .

[41]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[42]  R. Iman,et al.  A distribution-free approach to inducing rank correlation among input variables , 1982 .

[43]  R. Nelsen Discrete bivariate distributions with given marginals and correlation , 1987 .

[44]  D E Burmaster,et al.  Principles of good practice for the use of Monte Carlo techniques in human health and ecological risk assessments. , 1994, Risk analysis : an official publication of the Society for Risk Analysis.

[45]  W. Cui,et al.  Interval probability theory for evidential support , 1990, Int. J. Intell. Syst..

[46]  R. L. Iman,et al.  An iterative algorithm to produce a positive definite correlation matrix from an approximate correlation matrix (with a program user's guide) , 1982 .

[47]  Philip M. Lurie,et al.  A Method for Simulating Correlated Random Variables From Partially Specified Distributions. , 1994 .

[48]  Arnold Neumaier,et al.  Taylor Forms—Use and Limits , 2003, Reliab. Comput..

[49]  A. Kaufmann,et al.  Introduction to fuzzy arithmetic : theory and applications , 1986 .

[50]  Nils Blomqvist,et al.  On a Measure of Dependence Between two Random Variables , 1950 .

[51]  H. Christopher Frey,et al.  Quantitative Analysis of Uncertainty and Variability in Environmental Policy Making , 1992 .

[52]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[53]  Jon C. Helton,et al.  Sampling-based methods for uncertainty and sensitivity analysis. , 2000 .

[54]  Edward L. Melnick,et al.  Misspecifications of the Normal Distribution , 1982 .

[55]  J. C. Helton,et al.  A COMPARISON OF UNCERTAINTY AND SENSITIVITY ANALYSIS TECHNIQUES FOR COMPUTER MODELS , 1985 .

[56]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[57]  Robert A. Goldstein,et al.  Inferring ecological risk from toxicity bioassays , 1996 .

[58]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[59]  James E. Campbell,et al.  An Approach to Sensitivity Analysis of Computer Models: Part I—Introduction, Input Variable Selection and Preliminary Variable Assessment , 1981 .

[60]  A. Müller Stop-loss order for portfolios of dependent risks , 1997 .

[61]  Wm. R. Wright General Intelligence, Objectively Determined and Measured. , 1905 .

[62]  J S Evans,et al.  The effect of neglecting correlations when propagating uncertainty and estimating the population distribution of risk. , 1992, Risk analysis : an official publication of the Society for Risk Analysis.

[63]  M. Fréchet Généralisation du théorème des probabilités totales , 1935 .

[64]  G. D. Makarov Estimates for the Distribution Function of a Sum of Two Random Variables When the Marginal Distributions are Fixed , 1982 .

[65]  J. C. Helton,et al.  Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty , 1997 .

[66]  J. Gentle Numerical Linear Algebra for Applications in Statistics , 1998 .

[67]  José Juan Quesada-Molina,et al.  BOUNDS ON BIVARIATE DISTRIBUTION FUNCTIONS WITH GIVEN MARGINS AND MEASURES OF ASSOCIATION , 2001 .

[68]  B. Flury On Sums of Random Variables and Independence , 1986 .

[69]  James E. Smith,et al.  Generalized Chebychev Inequalities: Theory and Applications in Decision Analysis , 1995, Oper. Res..

[70]  W. T. Barton Response from Palisade Corporation , 1989 .

[71]  Douglas J. Lucas Default Correlation and Credit Analysis , 1995 .

[72]  David E. Burmaster,et al.  A Review of Crystal Ball , 1990 .

[73]  Kari Sentz,et al.  Combination of Evidence in Dempster-Shafer Theory , 2002 .

[74]  Fulvio Tonon,et al.  Concept of Random Sets as Applied to the Design of Structures and Analysis of Expert Opinions for Aircraft Crash , 1999 .

[75]  D. Stoller,et al.  On the Generation of Normal Random Vectors , 1962 .

[76]  Charles J. Kowalski,et al.  Non-Normal Bivariate Distributions with Normal Marginals , 1973 .

[77]  B. Schweizer,et al.  Thirty Years of Copulas , 1991 .

[78]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[79]  P. R. Nelson The algebra of random variables , 1979 .

[80]  R. Clemen,et al.  Correlations and Copulas for Decision and Risk Analysis , 1999 .

[81]  Jon C. Helton,et al.  Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems , 2002 .

[82]  Jon C. Helton,et al.  Investigation of Evidence Theory for Engineering Applications , 2002 .

[83]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[84]  Ronald L. Iman,et al.  A FORTRAN-77 PROGRAM AND USER'S GUIDE FOR THE GENERATION OF LATIN HYPERCUBE AND RANDOM SAMPLES FOR USE WITH COMPUTER MODELS , 1984 .

[85]  S. Skelboe Computation of rational interval functions , 1974 .

[86]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[87]  Daniel Berleant,et al.  Bounding the Results of Arithmetic Operations on Random Variables of Unknown Dependency Using Intervals , 1998, Reliab. Comput..

[88]  Daniel Berleant,et al.  Representation and problem solving with Distribution Envelope Determination (DEnv) , 2004, Reliab. Eng. Syst. Saf..

[89]  Andrew P. Sage,et al.  Uncertainty in Artificial Intelligence , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[90]  F. O. Hoffman,et al.  Evaluation of Software for Propagating Uncertainty Through Risk Assessment Models , 1998 .

[91]  C. Genest,et al.  The Joy of Copulas: Bivariate Distributions with Uniform Marginals , 1986 .

[92]  R. Iman,et al.  Rank correlation plots for use with correlated input variables , 1982 .

[93]  Scott Ferson,et al.  Risk assessment in conservation biology , 1993 .

[94]  Roger B. Nelsen,et al.  Copulas, Characterization, Correlation, and Counterexamples , 1995 .

[95]  Max Henrion,et al.  Analytical A Software Tool for Uncertainty Analysis and Model Communication , 1990 .

[96]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[97]  Roger M. Cooke,et al.  The vine copula method for representing high dimensional dependent distributions: application to continuous belief nets , 2002, Proceedings of the Winter Simulation Conference.

[98]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[99]  Armando Mammino,et al.  Determination of parameters range in rock engineering by means of Random Set Theory , 2000, Reliab. Eng. Syst. Saf..

[100]  R. E. Wheeler Statistical distributions , 1983, APLQ.

[101]  Jon C. Helton,et al.  Mathematical representation of uncertainty , 2001 .

[102]  Michel Denuit,et al.  Distributional bounds for functions of dependent risks , 2002 .

[103]  P. X. Song,et al.  Generating dependent random numbers with given correlations and margins from exponential dispersion models , 1997 .

[104]  S. Ferson,et al.  Quality assurance for Monte Carlo risk assessment , 1995, Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society.

[105]  M. Evans Statistical Distributions , 2000 .

[106]  Marc Goovaerts,et al.  Upper and Lower Bounds for Sums of Random Variables. , 2000 .

[107]  Hang Cheng,et al.  A Software Tool for Automatically Verified Operations on Intervals and Probability Distributions , 1998, Reliab. Comput..

[108]  R. L. Iman,et al.  Rank correlation plots for use with correlated input variables in simulation studies , 1980 .

[109]  E. S. Rubin,et al.  A Review of @RISK , 1989 .

[110]  Theodore Hailperin,et al.  Boole's logic and probability , 1976 .

[111]  F. O. Hoffman,et al.  Propagation of uncertainty in risk assessments: the need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. , 1994, Risk analysis : an official publication of the Society for Risk Analysis.

[112]  Niels C. Lind,et al.  Two Principles for Data Based Probabilistic System Analysis , 1990 .

[113]  Henry E. Kyburg,et al.  INTERVAL-VALUED PROBABILITIES , 2000 .

[114]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[115]  Dilip B. Madan,et al.  Decision theory with complex uncertainties , 1988, Synthese.

[116]  Jon C. Helton,et al.  Calculation of reactor accident safety goals , 1993 .

[117]  Roger B. Nelsen,et al.  Copulas and Association , 1991 .

[118]  G. Boole An Investigation of the Laws of Thought: On which are founded the mathematical theories of logic and probabilities , 2007 .

[119]  C. Joslyn Approximate representations of random intervals for hybrid uncertainty quantification in engineering modeling , 2004 .

[120]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[121]  Fabio Gagliardi Cozman,et al.  Graphoid properties of epistemic irrelevance and independence , 2005, Annals of Mathematics and Artificial Intelligence.

[122]  James H. Lambert,et al.  When and How Can You Specify a Probability Distribution When You Don't Know Much? II , 1999 .

[123]  Eberhard O. Voit,et al.  Hierarchical Monte Carlo modeling with S-distributions: Concepts and illustrative analysis of mercury contamination in king mackerel , 1995 .

[124]  S Ferson,et al.  Conservative Uncertainty Propagation in Environmental Risk Assessments , 1995 .

[125]  Caroline M. Eastman,et al.  Review: Introduction to fuzzy arithmetic: Theory and applications : Arnold Kaufmann and Madan M. Gupta, Van Nostrand Reinhold, New York, 1985 , 1987, Int. J. Approx. Reason..

[126]  Adam M. Finkel Stepping out of your own shadow: A didactic example of how facing uncertainty can improve decision-making , 1994 .

[127]  Abigail Holley,et al.  Palisade Corporation , 2005, WSC '05.

[128]  E. Lehmann Some Concepts of Dependence , 1966 .

[129]  C N Haas On modeling correlated random variables in risk assessment. , 1999, Risk analysis : an official publication of the Society for Risk Analysis.

[130]  H. Christopher Frey,et al.  Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing with Variability and Uncertainty in Models and Inputs , 1999 .

[131]  Alan Burns,et al.  Probabilistic timing analysis: An approach using copulas , 2005, J. Embed. Comput..

[132]  I. Good,et al.  The Maximum Entropy Formalism. , 1979 .

[133]  J. Charles Kerkering,et al.  Eliciting and Analyzing Expert Judgment, A Practical Guide , 2002, Technometrics.

[134]  Jon C. Helton,et al.  Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal , 1993 .

[135]  G. Matheron Random Sets and Integral Geometry , 1976 .

[136]  Marc Goovaerts,et al.  Stochastic Upper Bounds for Present Value Functions , 2000 .

[137]  H. Robbins On the Measure of a Random Set , 1944 .

[138]  Inés Couso,et al.  Examples of Independence for Imprecise Probabilities , 1999, ISIPTA.

[139]  Max Henrion,et al.  A Framework for Comparing Uncertain Inference Systems to Probability , 1985, UAI.

[140]  F. Breitenecker,et al.  Elements of simulation , 1997 .

[141]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[142]  R. Cooke,et al.  Elliptical copulae , 2001 .

[143]  R. Nelsen Properties of a one-parameter family of bivariate distributions with specified marginals , 1986 .

[144]  Martin Crowder,et al.  Continuous Bivariate Distributions, Emphasizing Applications , 1993 .

[145]  J. Wolfowitz,et al.  An Introduction to the Theory of Statistics , 1951, Nature.

[146]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[147]  E J Calabrese,et al.  Lack of total independence of uncertainty factors (UFs): implications for the size of the total uncertainty factor. , 1993, Regulatory toxicology and pharmacology : RTP.

[148]  W E Vesely,et al.  Fault Tree Handbook , 1987 .

[149]  I. Good,et al.  The Maximum Entropy Formalism. , 1979 .

[150]  Daniel Berleant,et al.  Using Pearson Correlation to Improve Envelopes around the Distributions of Functions , 2004, Reliab. Comput..

[151]  Russell R. Barton,et al.  Proceedings of the 2000 winter simulation conference , 2000 .

[152]  Thomas Fetz Sets of joint probability measures generated by weighted marginal focal sets , 2001, ISIPTA.

[153]  S. Ferson,et al.  Correlations, dependency bounds and extinction risks , 1995 .