Quantum computing at the frontiers of biological sciences

[1]  Kunal Kathuria,et al.  Implementation of a Hamming distance–like genomic quantum classifier using inner products on ibmqx2 and ibmq_16_melbourne , 2020, Quantum Machine Intelligence.

[2]  T. Jennewein,et al.  Focus on quantum science and technology initiatives around the world , 2019, Quantum Science and Technology.

[3]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[4]  Michael J. McConnell,et al.  Implementation of a Hamming-Distance-Like Genomic Quantum Classifier Using Inner Products on IBMQX4 and IBMQX16 , 2019, 1907.08267.

[5]  T. Ge,et al.  Resting brain dynamics at different timescales capture distinct aspects of human behavior , 2019, Nature Communications.

[6]  Michael G. Raymer,et al.  The U.S. National Quantum Initiative: From Act to action , 2019, Science.

[7]  Andrew M. Childs,et al.  Quantum Spectral Methods for Differential Equations , 2019, Communications in Mathematical Physics.

[8]  Prashant S. Emani,et al.  Comprehensive functional genomic resource and integrative model for the human brain , 2018, Science.

[9]  J. Marchini,et al.  Genome-wide association studies of brain imaging phenotypes in UK Biobank , 2018, Nature.

[10]  G. Chan,et al.  The electronic complexity of the ground-state of the FeMo cofactor of nitrogenase as relevant to quantum simulations. , 2018, The Journal of chemical physics.

[11]  D. V. Essen,et al.  Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics , 2018, Neuron.

[12]  Peter Dayan,et al.  Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models , 2018, bioRxiv.

[13]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[14]  Yue Wu,et al.  A scalable estimator of SNP heritability for biobank-scale data , 2018, bioRxiv.

[15]  M. Schuld,et al.  Circuit-centric quantum classifiers , 2018, Physical Review A.

[16]  Oliver Y. Chén,et al.  The human cortex possesses a reconfigurable dynamic network architecture that is disrupted in psychosis , 2018, Nature Communications.

[17]  Maria Schuld,et al.  Quantum Machine Learning in Feature Hilbert Spaces. , 2018, Physical review letters.

[18]  Daniel A. Lidar,et al.  Quantum annealing versus classical machine learning applied to a simplified computational biology problem , 2018, npj Quantum Information.

[19]  Walter Vinci,et al.  Quantum variational autoencoder , 2018, Quantum Science and Technology.

[20]  Stephen M. Smith,et al.  Brain network dynamics are hierarchically organized in time , 2017, Proceedings of the National Academy of Sciences.

[21]  Byron Boots,et al.  Learning Hidden Quantum Markov Models , 2017, AISTATS.

[22]  Ronald de Wolf,et al.  Guest Column: A Survey of Quantum Learning Theory , 2017, SIGA.

[23]  Anne E Carpenter,et al.  Opportunities and obstacles for deep learning in biology and medicine , 2017, bioRxiv.

[24]  J. Krystal,et al.  Searching for Cross-Diagnostic Convergence: Neural Mechanisms Governing Excitation and Inhibition Balance in Schizophrenia and Autism Spectrum Disorders , 2017, Biological Psychiatry.

[25]  B. T. Thomas Yeo,et al.  Interpreting temporal fluctuations in resting-state functional connectivity MRI , 2017, NeuroImage.

[26]  Ryan E. Mills,et al.  Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network , 2017, Science.

[27]  Andris Ambainis,et al.  Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games , 2017, STOC.

[28]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[29]  Velimir V. Vesselinov,et al.  Nonnegative/Binary matrix factorization with a D-Wave quantum annealer , 2017, PloS one.

[30]  Maria Schuld,et al.  Implementing a distance-based classifier with a quantum interference circuit , 2017, 1703.10793.

[31]  Masoud Mohseni,et al.  Commercialize quantum technologies in five years , 2017, Nature.

[32]  Rasool Tahmasbi,et al.  Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits , 2017, Nature Genetics.

[33]  Ronald de Wolf,et al.  A Survey of Quantum Learning Theory , 2017, ArXiv.

[34]  Andrew M. Childs,et al.  Quantum Algorithm for Linear Differential Equations with Exponentially Improved Dependence on Precision , 2017, Communications in Mathematical Physics.

[35]  A. Price,et al.  Dissecting the genetics of complex traits using summary association statistics , 2016, Nature Reviews Genetics.

[36]  Xiao-Jing Wang,et al.  Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex , 2016, Science Advances.

[37]  Shane A. McCarthy,et al.  Reference-based phasing using the Haplotype Reference Consortium panel , 2016, Nature Genetics.

[38]  Roger Melko,et al.  Quantum Boltzmann Machine , 2016, 1601.02036.

[39]  John H Krystal,et al.  Functional hierarchy underlies preferential connectivity disturbances in schizophrenia , 2015, Proceedings of the National Academy of Sciences.

[40]  Matthew P. A. Fisher,et al.  Quantum Cognition: The possibility of processing with nuclear spins in the brain , 2015, 1508.05929.

[41]  T. Lehtimäki,et al.  Integrative approaches for large-scale transcriptome-wide association studies , 2015, Nature Genetics.

[42]  Kaanan P. Shah,et al.  A gene-based association method for mapping traits using reference transcriptome data , 2015, Nature Genetics.

[43]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[44]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[45]  Ashley Montanaro,et al.  Quantum Pattern Matching Fast on Average , 2014, Algorithmica.

[46]  M. Corbetta,et al.  How Local Excitation–Inhibition Ratio Impacts the Whole Brain Dynamics , 2014, The Journal of Neuroscience.

[47]  Maurizio Corbetta,et al.  Resting-State Functional Connectivity Emerges from Structurally and Dynamically Shaped Slow Linear Fluctuations , 2013, The Journal of Neuroscience.

[48]  Matthew D. Rasmussen,et al.  Genome-Wide Inference of Ancestral Recombination Graphs , 2013, PLoS genetics.

[49]  F. Nori,et al.  Quantum biology , 2012, Nature Physics.

[50]  Manolis Kellis,et al.  Interpreting non-coding variation in complex disease genetics , 2012, Nature Biotechnology.

[51]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[52]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[53]  Gustavo Deco,et al.  How anatomy shapes dynamics: a semi-analytical study of the brain at rest by a simple spin model , 2012, Front. Comput. Neurosci..

[54]  Vlatko Vedral,et al.  Towards quantum simulations of biological information flow , 2012, Interface Focus.

[55]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[56]  R. Durbin,et al.  Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses , 2012, Nature Protocols.

[57]  Vlatko Vedral,et al.  Quantum coherent contributions in biological electron transfer , 2011, 1111.1646.

[58]  R. Durbin,et al.  Inference of human population history from individual whole-genome sequences. , 2011, Nature.

[59]  R. Durbin,et al.  Inference of Human Population History From Whole Genome Sequence of A Single Individual , 2011, Nature.

[60]  Seth Lloyd,et al.  Interplay between coherence and decoherence in LHCII photosynthetic complex , 2011, 1106.1986.

[61]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[62]  I. Chuang,et al.  Quantum computation and quantum information , 2020 .

[63]  Heng Li,et al.  A survey of sequence alignment algorithms for next-generation sequencing , 2010, Briefings Bioinform..

[64]  Sarah A Harris,et al.  Quantum-assisted biomolecular modelling , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[65]  K. Wiesner,et al.  Hidden Quantum Markov Models and non-adaptive read-out of many-body states , 2010, 1002.2337.

[66]  Gian Giacomo Guerreschi,et al.  Motional effects on the efficiency of excitation transfer , 2010, 1002.0346.

[67]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[68]  Animesh Datta,et al.  Entanglement and entangling power of the dynamics in light-harvesting complexes , 2009, 0912.0122.

[69]  Animesh Datta,et al.  Noise-assisted energy transfer in quantum networks and light-harvesting complexes , 2009, 0910.4153.

[70]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[71]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[72]  Bruce Fischl,et al.  Combined Volumetric and Surface Registration , 2009, IEEE Transactions on Medical Imaging.

[73]  Tobias J. Osborne,et al.  A quantum algorithm to solve nonlinear differential equations , 2008, 0812.4423.

[74]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[75]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[76]  S. Lloyd,et al.  Environment-assisted quantum walks in photosynthetic energy transfer. , 2008, The Journal of chemical physics.

[77]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[78]  R. Durbin,et al.  Mapping trait loci by use of inferred ancestral recombination graphs. , 2006, American journal of human genetics.

[79]  S. Horvath,et al.  A General Framework for Weighted Gene Co-Expression Network Analysis , 2005, Statistical applications in genetics and molecular biology.

[80]  Ramesh Hariharan,et al.  String matching in Õ(sqrt(n)+sqrt(m)) quantum time , 2003, J. Discrete Algorithms.

[81]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[82]  H. Stapp The importance of quantum decoherence in brain processes , 2000, quant-ph/0010029.

[83]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[84]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[85]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[86]  M. Sipser,et al.  Limit on the Speed of Quantum Computation in Determining Parity , 1998, quant-ph/9802045.

[87]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[88]  J. D. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[89]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[90]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[91]  Tomaso Poggio,et al.  From Understanding Computation to Understanding Neural Circuitry , 1976 .

[92]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[93]  V. Vinay,et al.  String Matching in ˜ O ( √ n + √ m ) Quantum Time , 2022 .

[94]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[95]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[96]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[97]  Bruce J. Berne,et al.  Global Optimization : Quantum Thermal Annealing with Path Integral Monte Carlo , 1999 .

[98]  R. Griffiths,et al.  An ancestral recombination graph , 1997 .

[99]  R. W. Robinson Counting unlabeled acyclic digraphs , 1977 .