Neuronal Oscillations in the Visual Cortex: Γ-Convergence to the Riemannian Mumford-Shah Functional
暂无分享,去创建一个
[1] C. M. Place,et al. Ordinary Differential Equations , 1982 .
[2] E. D. Giorgi,et al. Existence theorem for a minimum problem with free discontinuity set , 1989 .
[3] N. Fusco,et al. Regularity of Minimizers for a Class of Anisotropic Free Discontinuity Problems , 2001 .
[4] Cristina Trombetti. Existence of minimizers for a class of anisotropic free discontinuity problems , 1999 .
[5] A. Chambolle,et al. Discrete approximation of the Mumford-Shah functional in dimension two , 1999, ESAIM: Mathematical Modelling and Numerical Analysis.
[6] David J. Field,et al. Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.
[7] G. Ermentrout,et al. Symmetry and phaselocking in chains of weakly coupled oscillators , 1986 .
[8] Irene Fonseca,et al. Regularity results for anisotropic image segmentation models , 1997 .
[9] L. Ambrosio. Existence theory for a new class of variational problems , 1990 .
[10] Massimo Gobbino. Finite Difference Approximation of the Mumford-Shah Functional , 1998 .
[11] G. Bellettini,et al. Anisotropic motion by mean curvature in the context of Finsler geometry , 1996 .
[12] Annalisa Baldi,et al. WEIGHTED BV FUNCTIONS , 2001 .
[13] G. Ermentrout,et al. Phase transition and other phenomena in chains of coupled oscilators , 1990 .
[14] L. Evans. Measure theory and fine properties of functions , 1992 .
[15] D. Mumford,et al. Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .
[16] H. Fédérer. Geometric Measure Theory , 1969 .
[17] Massimo Gobbino,et al. Finite-difference approximation of free-discontinuity problems , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[18] Luigi Ambrosio,et al. ON THE APPROXIMATION OF FREE DISCONTINUITY PROBLEMS , 1992 .
[19] Francoise Demengel. Some Remarks on variational problems on bv(ω,S1) and W1,1(ω,S1) , 1993 .
[20] Guy David,et al. C1-Arcs for Minimizers of the Mumford-Shah Functional , 1996, SIAM J. Appl. Math..
[21] J. Jost. Riemannian geometry and geometric analysis , 1995 .
[22] M. Gelli. From Discrete to Continuum: a Variational Approach the One-dimensional Case , 2000 .
[23] Adriana Garroni,et al. Variational Formulation of Softening Phenomena in Fracture Mechanics: The One‐Dimensional Case , 1999 .
[24] J. Cowan,et al. Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.
[25] A. Chambolle. FINITE-DIFFERENCES DISCRETIZATIONS OF THE MUMFORD-SHAH FUNCTIONAL , 1999 .
[26] A. Bonnet,et al. On the regularity of edges in image segmentation , 1996 .
[27] Andrea Braides,et al. Continuum Limits of Discrete Systems without Convexity Hypotheses , 2002 .
[28] H. Schuster,et al. A model for neuronal oscillations in the visual cortex , 1990, Biological Cybernetics.
[29] P. Hartman. Ordinary Differential Equations , 1965 .
[30] R Malladi,et al. Subjective surfaces: a method for completing missing boundaries. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[31] Luigi Ambrosio,et al. Partial regularity of free discontinuity sets, II , 1997 .
[32] Alexis Bonnet,et al. Cracktip is a global Mumford-Shah minimizer , 2018, Astérisque.
[33] Guido Cortesani,et al. Sequences of Non‐Local Functionals Which Approximate Free‐Discontinuity Problems , 1998 .
[34] Andrea Braides,et al. Non-local approximation of the Mumford-Shah functional , 1997 .
[35] G. D. Maso,et al. An Introduction to-convergence , 1993 .
[36] H. Schuster,et al. A model for neuronal oscillations in the visual cortex , 1990, Biological Cybernetics.
[37] Massimo Gobbino,et al. Gradient flow for the one-dimensional Mumford-Shah functional , 1998 .