PRESISTANT: Learning based assistant for data pre-processing
暂无分享,去创建一个
Alberto Abelló | Robert Wrembel | Tomàs Aluja-Banet | Besim Bilalli | A. Abelló | R. Wrembel | T. Aluja-Banet | Besim Bilalli
[1] Harald Steck,et al. Evaluation of recommendations: rating-prediction and ranking , 2013, RecSys.
[2] Hilan Bensusan,et al. Meta-Learning by Landmarking Various Learning Algorithms , 2000, ICML.
[3] Maurizio Lenzerini,et al. Data integration: a theoretical perspective , 2002, PODS.
[4] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[5] David J. Hand,et al. Measuring classifier performance: a coherent alternative to the area under the ROC curve , 2009, Machine Learning.
[6] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[7] Alexandre Quemy,et al. Data Pipeline Selection and Optimization , 2019, DOLAP.
[8] Alberto Abelló,et al. Towards Intelligent Data Analysis: The Metadata Challenge , 2016, IoTBD.
[9] Christophe G. Giraud-Carrier,et al. The data mining advisor: meta-learning at the service of practitioners , 2005, Fourth International Conference on Machine Learning and Applications (ICMLA'05).
[10] Bernd Neumayr,et al. The VADA Architecture for Cost-Effective Data Wrangling , 2017, SIGMOD Conference.
[11] Guy Lapalme,et al. A systematic analysis of performance measures for classification tasks , 2009, Inf. Process. Manag..
[12] Paolo Papotti,et al. The LLUNATIC Data-Cleaning Framework , 2013, Proc. VLDB Endow..
[13] Derek H. Sleeman,et al. Consultant-2: pre- and post-processing of Machine Learning applications , 1995, Int. J. Hum. Comput. Stud..
[14] Andreas Dengel,et al. Automatic classifier selection for non-experts , 2012, Pattern Analysis and Applications.
[15] Alberto Abelló,et al. On the predictive power of meta-features in OpenML , 2017, Int. J. Appl. Math. Comput. Sci..
[16] Michael Stonebraker,et al. Data Curation at Scale: The Data Tamer System , 2013, CIDR.
[17] Ricardo Vilalta,et al. Metalearning - Applications to Data Mining , 2008, Cognitive Technologies.
[18] Dimitris Kanellopoulos,et al. Data Preprocessing for Supervised Leaning , 2007 .
[19] Jaana Kekäläinen,et al. IR evaluation methods for retrieving highly relevant documents , 2000, SIGIR '00.
[20] Kevin Leyton-Brown,et al. Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms , 2012, KDD.
[21] Melanie Hilario,et al. Using Meta-mining to Support Data Mining Workflow Planning and Optimization , 2014, J. Artif. Intell. Res..
[22] Peter A. Flach,et al. Improved Dataset Characterisation for Meta-learning , 2002, Discovery Science.
[23] Jan Raes,et al. Inside two commercially available statistical expert systems , 1992 .
[24] Alberto Abelló,et al. Intelligent assistance for data pre-processing , 2018, Comput. Stand. Interfaces.
[25] H. V. Jagadish,et al. Foofah: A Programming-By-Example System for Synthesizing Data Transformation Programs , 2017, SIGMOD Conference.
[26] Melanie Hilario,et al. Model selection via meta-learning: a comparative study , 2000, Proceedings 12th IEEE Internationals Conference on Tools with Artificial Intelligence. ICTAI 2000.
[27] Abraham Bernstein,et al. A survey of intelligent assistants for data analysis , 2013, CSUR.
[28] Paolo Papotti,et al. BigDansing: A System for Big Data Cleansing , 2015, SIGMOD Conference.
[29] Ahmed Eldawy,et al. NADEEF: a commodity data cleaning system , 2013, SIGMOD '13.
[30] Sanjay Krishnan,et al. ActiveClean: An Interactive Data Cleaning Framework For Modern Machine Learning , 2016, SIGMOD Conference.
[31] Ron Kohavi,et al. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.
[32] Ian H. Witten,et al. The WEKA data mining software: an update , 2009, SKDD.
[33] Ihab F. Ilyas,et al. Data Cleaning: Overview and Emerging Challenges , 2016, SIGMOD Conference.
[34] Luís Torgo,et al. OpenML: networked science in machine learning , 2014, SKDD.
[35] Christophe G. Giraud-Carrier,et al. On the dangers of default implementations: The case of radial basis function networks , 2014, Intell. Data Anal..
[36] Mohammad Ghavamzadeh,et al. Automated Data Cleansing through Meta-Learning , 2017, AAAI.
[37] Tianqi Chen,et al. XGBoost: A Scalable Tree Boosting System , 2016, KDD.
[38] Paolo Papotti,et al. KATARA: A Data Cleaning System Powered by Knowledge Bases and Crowdsourcing , 2015, SIGMOD Conference.
[39] Abraham Bernstein,et al. "Semantics Inside!" But Let's Not Tell the Data Miners: Intelligent Support for Data Mining , 2014, ESWC.
[40] Claudia Diamantini,et al. Ontology-Driven KDD Process Composition , 2009, IDA.
[41] Rudi Studer,et al. AST: Support for Algorithm Selection with a CBR Approach , 1999, PKDD.
[42] Katharina Morik,et al. The MiningMart Approach , 2002, GI Jahrestagung.
[43] Aaron Klein,et al. Efficient and Robust Automated Machine Learning , 2015, NIPS.
[44] Frank Hutter,et al. Initializing Bayesian Hyperparameter Optimization via Meta-Learning , 2015, AAAI.
[45] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[46] Michael Stonebraker,et al. DataXFormer: An Interactive Data Transformation Tool , 2015, SIGMOD Conference.
[47] Sanjay Krishnan,et al. ActiveClean: Interactive Data Cleaning For Statistical Modeling , 2016, Proc. VLDB Endow..
[48] Alberto Abelló,et al. Automated Data Pre-processing via Meta-learning , 2016, MEDI.
[49] Sumit Gulwani,et al. Learning Semantic String Transformations from Examples , 2012, Proc. VLDB Endow..
[50] Jeffrey C. Carver,et al. Using Empirical Studies during Software Courses , 2003, ESERNET.
[51] Ahmed K. Elmagarmid,et al. Guided data repair , 2011, Proc. VLDB Endow..
[52] Tim Furche,et al. Data Wrangling for Big Data: Challenges and Opportunities , 2016, EDBT.
[53] Joseph M. Hellerstein,et al. Potter's Wheel: An Interactive Data Cleaning System , 2001, VLDB.
[54] Laure Berti-Équille,et al. Learn2Clean: Optimizing the Sequence of Tasks for Web Data Preparation , 2019, WWW.
[55] Alexandros Kalousis,et al. Algorithm selection via meta-learning , 2002 .
[56] Randal S. Olson,et al. Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science , 2016, GECCO.
[57] Jeffrey Heer,et al. Wrangler: interactive visual specification of data transformation scripts , 2011, CHI.
[58] Renée J. Miller,et al. Continuous data cleaning , 2014, 2014 IEEE 30th International Conference on Data Engineering.
[59] Theodore Johnson,et al. Exploratory Data Mining and Data Cleaning , 2003 .
[60] M. Arthur Munson,et al. A study on the importance of and time spent on different modeling steps , 2012, SKDD.
[61] Padhraic Smyth,et al. From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..
[62] Alberto Abelló,et al. PRESISTANT: Data Pre-processing Assistant , 2018, CAiSE Forum.
[63] Michael Stonebraker,et al. The Data Civilizer System , 2017, CIDR.