The Exactness Property of the Vector Exact l1 Penalty Function Method in Nondifferentiable Invex Multiobjective Programming

ABSTRACT In this article, the vector exact l1 penalty function method used for solving nonconvex nondifferentiable multiobjective programming problems is analyzed. In this method, the vector penalized optimization problem with the vector exact l1 penalty function is defined. Conditions are given guaranteeing the equivalence of the sets of (weak) Pareto optimal solutions of the considered nondifferentiable multiobjective programming problem and of the associated vector penalized optimization problem with the vector exact l1 penalty function. This equivalence is established for nondifferentiable invex vector optimization problems. Some examples of vector optimization problems are presented to illustrate the results established in the article.

[1]  W. Zangwill Non-Linear Programming Via Penalty Functions , 1967 .

[2]  T. Pietrzykowski An Exact Potential Method for Constrained Maxima , 1969 .

[3]  Roger Fletcher,et al.  An exact penalty function for nonlinear programming with inequalities , 1973, Math. Program..

[4]  Jon W. Tolle,et al.  Exact penalty functions in nonlinear programming , 1973, Math. Program..

[5]  Christakis Charalambous,et al.  A lower bound for the controlling parameters of the exact penalty functions , 1978, Math. Program..

[6]  S. Dolecki,et al.  Exact Penalties for Local Minima , 1979 .

[7]  Christakis Charalambous,et al.  On conditions for optimality of the nonlinearl1 problem , 1979, Math. Program..

[8]  Olvi L. Mangasarian,et al.  Exact penalty functions in nonlinear programming , 1979, Math. Program..

[9]  M. A. Hanson On sufficiency of the Kuhn-Tucker conditions , 1981 .

[10]  B. Craven Invex functions and constrained local minima , 1981, Bulletin of the Australian Mathematical Society.

[11]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[12]  M. Minami Weak Pareto-optimal necessary conditions in a nondifferentiable multiobjective program on a Banach space , 1983 .

[13]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[14]  Johannes Jahn,et al.  Scalarization in vector optimization , 1984, Math. Program..

[15]  Eric Rosenberg,et al.  Exact penalty functions and stability in locally Lipschitz programming , 1984, Math. Program..

[16]  Kiyotaka Shimizu,et al.  Necessary and sufficient conditions for the efficient solutions of nondifferentiable multiobjective problems , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  O. Mangasarian Sufficiency of exact penalty minimization , 1985 .

[18]  A. Peressini,et al.  The Mathematics Of Nonlinear Programming , 1988 .

[19]  L. Grippo,et al.  Exact penalty functions in constrained optimization , 1989 .

[20]  B. Craven Nonsmooth multiobjective programming , 1989 .

[21]  R. Osuna-Gómez,et al.  Invex Functions and Generalized Convexity in Multiobjective Programming , 1998 .

[22]  G. Giorgi,et al.  The Notion of Invexity in Vector Optimization: Smooth and Nonsmooth Case , 1998 .

[23]  D. Bertsekas,et al.  Enhanced Optimality Conditions and Exact Penalty Functions , 2000 .

[24]  D. Bertsekas,et al.  Enhanced Optimality Conditions and Exact Penalty Functions 1 , 2000 .

[25]  Invexity of supremum and infimum functions , 2002, Bulletin of the Australian Mathematical Society.

[26]  C. Tammer,et al.  Theory of Vector Optimization , 2003 .

[27]  Do Sang Kim,et al.  Optimality and Duality for Invex Nonsmooth Multiobjective programming problems , 2004 .

[28]  T. Antczak An η-approximation method in nonlinear vector optimization , 2005 .

[29]  Katta G. Murty,et al.  Nonlinear Programming Theory and Algorithms , 2007, Technometrics.

[30]  T. Antczak AN η-APPROXIMATION METHOD FOR NONSMOOTH MULTIOBJECTIVE PROGRAMMING PROBLEMS , 2008, The ANZIAM Journal.

[31]  Tadeusz Antczak The vector exact l1 penalty method for nondifferentiable convex multiobjective programming problems , 2012, Appl. Math. Comput..

[32]  Klaudia Beich,et al.  Theory Of Vector Optimization , 2016 .