Improved Integrated Robotic Intraocular Snake: Analyses of the Kinematics and Drive Mechanism of the Dexterous Distal Unit

Retinal surgery can be performed only by surgeons possessing advanced surgical skills because of the small, confined intraocular space, and the restricted free motion of the instruments in contact with the sclera. Snake-like robots may be essential for use in retinal surgery to overcome this problem. Such robots can approach the target site from suitable directions and operate on delicate tissues during retinal vein cannulation, epiretinal membrane peeling, and so on. We propose an improved integrated robotic intraocular snake (I2RIS), which is a new version of our previous IRIS. This study focused on the analyses of the kinematics and drive mechanism of the dexterous distal unit. This unit consists of small elements with reduced contact stress achieved by changing wire-hole positions. The kinematic analysis of the dexterous distal unit shows that it is possible to control the bending angle and direction of the unit by using two pairs of drive wires. The proposed drive mechanism includes a new pull-and-release wire mechanism in which the drive pulley is mounted at a right angle relative to the actuation direction (also, relative to the conventional direction). Analysis of the drive mechanism shows that compared to the previous drive mechanism, the proposed mechanism is simpler and easier to assemble and yields higher accuracy and resolution. Furthermore, considering clinical use, the instrument of the I2RIS is detachable from the motor unit easily for cleaning, sterilization, and attachment of various surgical tools. Analyses of the kinematics and drive mechanism and the basic functions of the proposed mechanism were verified experimentally on actual-size prototypes of the instrument and motor units.