Development of an electrokinetic actuator and its applications in compressors

[1]  Q. Wan Effect of electrical double-layer overlap on the electroosmotic flow in packed-capillary columns. , 1997, Analytical chemistry.

[2]  B. Locke,et al.  Electro-Osmotic Flow in Porous Media Using Magnetic Resonance Imaging , 2001 .

[3]  Athanasios I. Liapis,et al.  Network modeling of the intraparticle convection and diffusion of molecules in porous particles packed in a chromatographic column , 1998 .

[4]  Yuejun Kang,et al.  Electroosmotic flow in a capillary annulus with high zeta potentials. , 2002, Journal of colloid and interface science.

[5]  Chun Yang,et al.  ANALYSIS OF ELECTROKINETIC EFFECTS ON THE LIQUID FLOW IN RECTANGULAR MICROCHANNELS , 1998 .

[6]  Generating high pressure sub-microliter flow rate in packed microchannel by electroosmotic force: potential application in microfluidic systems , 2003 .

[7]  Juan G. Santiago,et al.  A planar electroosmotic micropump , 2002 .

[8]  A. Rathore,et al.  Capillary electrochromatography: theories on electroosmotic flow in porous media. , 1997, Journal of chromatography. A.

[9]  Robert W. Crocker,et al.  High-pressure microhydraulic actuator , 2003 .

[10]  R. J. Hunter Zeta potential in colloid science : principles and applications , 1981 .

[11]  Johannes Lyklema,et al.  Electrokinetics after Smoluchowski , 2003 .

[12]  Marcos,et al.  Dynamic aspects of electroosmotic flow in rectangular microchannels , 2004 .

[13]  K. Takehara,et al.  Particle tracking techniques for electrokinetic microchannel flows. , 2002, Analytical chemistry.

[14]  J J Meyers,et al.  Network modeling of the convective flow and diffusion of molecules adsorbing in monoliths and in porous particles packed in a chromatographic column. , 1999, Journal of chromatography. A.

[15]  Yuejun Kang,et al.  Dynamic aspects of electroosmotic flow in a cylindrical microcapillary , 2002 .

[16]  J. Santiago,et al.  Porous glass electroosmotic pumps: design and experiments. , 2003, Journal of colloid and interface science.

[17]  R. Adrian,et al.  Liquid flows in microchannels , 2005 .

[18]  A. Liapis,et al.  Modeling the velocity field of the electroosmotic flow in charged capillaries and in capillary columns packed with charged particles: interstitial and intraparticle velocities in capillary electrochromatography systems. , 2000, Journal of chromatography. A.

[19]  J. Thovert,et al.  Electroosmotic Phenomena in Porous Media , 1996 .

[20]  A. Seidel-Morgenstern,et al.  Electroosmotic flow phenomena in packed capillaries: From the interstitial velocities to intraparticle and boundary layer mass transfer , 2002 .

[21]  Cheng S. Lee,et al.  Analysis of separation efficiency in capillary electrophoresis with direct control of electroosmosis by using an external electric field , 1991 .

[22]  C. Werner,et al.  Electrokinetic Measurements Reveal Interfacial Charge at Polymer Films Caused by Simple Electrolyte Ions , 2001 .

[23]  David Erickson,et al.  Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow. , 2003, Journal of colloid and interface science.

[24]  Dongqing Li,et al.  Direct and indirect electroosmotic flow velocity measurements in microchannels. , 2002, Journal of colloid and interface science.

[25]  Y. Çengel Introduction to thermodynamics and heat transfer , 1996 .

[26]  Joseph B. Franzini,et al.  Fluid Mechanics with Engineering Applications. 6th Ed. By R. L.DAUGHERTY and J. B. FRANZINI. McGraw-Hill. 1965. 574 pp. $9.95 or 80s. Fluid Dynamics. By J. W. DAILY and D. R. F. HARLEMAN. Addison Wesley. 1966. 454 pp. $12.50 or 94s. , 1967, Journal of Fluid Mechanics.

[27]  Cheng S. Lee,et al.  Direct control of the electroosmosis in capillary zone electrophoresis by using an external electric field , 1990 .

[28]  R.-J. Yang,et al.  Electroosmotic Flow in Microchannels. , 2001, Journal of colloid and interface science.

[29]  K. Ghowsi Field-effect electroosmosis , 1991 .

[30]  T. Kenny,et al.  Electroosmotic capillary flow with nonuniform zeta potential , 2000, Analytical Chemistry.

[31]  Yafeng Guan,et al.  Fabrication and characterization of a multi-stage electroosmotic pump for liquid delivery , 2005 .

[32]  G. Trägårdh,et al.  DETERMINING THE ZETA POTENTIAL OF ULTRAFILTRATION MEMBRANES USING THEIR SALT RETENTION , 1999 .

[33]  Qiaosheng Pu,et al.  Electric field-decoupled electroosmotic pump for microfluidic devices. , 2003, Journal of chromatography. A.

[34]  M. Chiari,et al.  External electric field control of electroosmotic flow in non-coated and coated fused-silica capillaries and its application for capillary electrophoretic separations of peptides. , 2000, Journal of chromatography. B, Biomedical sciences and applications.

[35]  Marcos,et al.  Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel. , 2004, Journal of colloid and interface science.

[36]  A. Foissy,et al.  Determining the Zeta Potential of Porous Membranes Using Electrolyte Conductivity inside Pores. , 2001, Journal of colloid and interface science.

[37]  Q. Wan Effect of Electroosmotic Flow on the Electrical Conductivity of Packed Capillary Columns , 1997 .

[38]  M. J. Kim,et al.  Electro-osmosis-driven micro-channel flows: A comparative study of microscopic particle image velocimetry measurements and numerical simulations , 2002 .

[39]  Dongqing Li,et al.  Electroosmotic velocity profiles in microchannels , 2003 .

[40]  Stone,et al.  Electroosmotic Flows Created by Surface Defects in Capillary Electrophoresis. , 1999, Journal of colloid and interface science.

[41]  Carlos Escobedo,et al.  Electroosmotic Flow in a Microcapillary with One Solution Displacing Another Solution , 2001 .

[42]  R. J. Hunter,et al.  Measuring zeta potential in concentrated industrial slurries , 2001 .

[43]  Dongqing Li,et al.  Liquid transport in rectangular microchannels by electroosmotic pumping , 2000 .

[44]  Merle C. Potter,et al.  Mechanics of Fluids , 1990 .

[45]  J. Santiago,et al.  Porous glass electroosmotic pumps: theory. , 2003, Journal of colloid and interface science.

[46]  F. Martínez-López,et al.  Comparative study of theories of conversion of electrophoretic mobility into ζ-potential , 2001 .

[47]  Dongqing Li,et al.  Heat Transfer and Fluid Flow in Microchannels , 1996, Microelectromechanical Systems (MEMS).

[48]  D. Reichmuth,et al.  Increasing the performance of high-pressure, high-efficiency electrokinetic micropumps using zwitterionic solute additives , 2003 .

[49]  Dongqing Li,et al.  Measurement of the Zeta Potential of Gas Bubbles in Aqueous Solutions by Microelectrophoresis Method , 2001 .

[50]  H. K. Lee,et al.  Field-amplified sample injection combined with water removal by electroosmotic flow pump in acidic buffer for analysis of phenoxy acid herbicides by capillary electrophoresis. , 2001, Analytical chemistry.

[51]  Frequency-dependent electroosmosis. , 2002, Journal of colloid and interface science.

[52]  S. Dukhin,et al.  Electrokinetic phenomena of the second kind and their applications , 1991 .

[53]  O. Guenat,et al.  Partial electroosmotic pumping in complex capillary systems: Part 1: Principles and general theoretical approach , 2001 .

[54]  Juan G. Santiago,et al.  A Large Flowrate Electroosmotic Pump With Micron Pores , 2001, Micro-Electro-Mechanical Systems (MEMS).

[55]  C. Culbertson,et al.  Electroosmotically induced hydraulic pumping with integrated electrodes on microfluidic devices. , 2001, Analytical chemistry.

[56]  Lung-Ming Fu,et al.  Electroosmotic entry flow in a microchannel , 2001 .

[57]  Andrea Gasparella,et al.  Unsteady state analysis of the compression cycle of a hermetic reciprocating compressor , 2003 .

[58]  Z. Deyl,et al.  Application of capillaries with minimized electroosmotic flow to the electrokinetic study of acidic drug–β-oleoyl-γ-palmitoyl-l-α-phosphatidyl choline liposome interactions , 2003 .

[59]  J. Santiago,et al.  Electrokinetic instability micromixing. , 2001, Analytical chemistry.

[60]  Quan Liao,et al.  Thermal effects on electro-osmotic pumping of liquids in microchannels , 2002 .

[61]  P. Callaghan,et al.  NMR Imaging of the Time Evolution of Electroosmotic Flow in a Capillary , 1995 .

[62]  Werner,et al.  Extended Electrokinetic Characterization of Flat Solid Surfaces. , 1998, Journal of colloid and interface science.

[63]  Lingxin Chen,et al.  Study of an electroosmotic pump for liquid delivery and its application in capillary column liquid chromatography. , 2004, Journal of chromatography. A.

[64]  E. Kreyszig,et al.  Advanced Engineering Mathematics. , 1974 .

[65]  G. Schmid,et al.  Introduction to Modern Colloid Science , 1995 .

[66]  Juan G. Santiago,et al.  High-pressure electroosmotic pumps based on porous polymer monoliths , 2004 .

[67]  C. Henry,et al.  Experimental studies of electroosmotic flow dynamics in microfabricated devices during current monitoring experiments. , 2003, Analytical chemistry.

[68]  Gun Trägårdh,et al.  Determining the zeta-potential of ceramic microfiltration membranes using the electroviscous effect , 1998 .

[69]  R. Probstein Physicochemical Hydrodynamics: An Introduction , 1989 .

[70]  J. Santiago Electroosmotic flows in microchannels with finite inertial and pressure forces. , 2001, Analytical chemistry.

[71]  Iulia M Lazar,et al.  Multiple open-channel electroosmotic pumping system for microfluidic sample handling. , 2002, Analytical chemistry.

[72]  T. Kenny,et al.  Closed-loop electroosmotic microchannel cooling system for VLSI circuits , 2002 .

[73]  L. Fu,et al.  Analysis of electroosmotic flow with step change in zeta potential. , 2003, Journal of colloid and interface science.

[74]  Dongqing Li,et al.  Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects , 1997 .

[75]  J. Gleeson Electroosmotic flows with random zeta potential. , 2002, Journal of colloid and interface science.

[76]  Dongqing Li,et al.  ELECTRICAL DOUBLE LAYER POTENTIAL DISTRIBUTION IN A RECTANGULAR MICROCHANNEL , 1998 .

[77]  Juan G. Santiago,et al.  Fabrication and characterization of electroosmotic micropumps , 2001 .

[78]  Juan G. Santiago,et al.  Electroosmotic flow pumps with polymer frits , 2002 .

[79]  Masliyah,et al.  Numerical Model of Electrokinetic Flow for Capillary Electrophoresis. , 1999, Journal of Colloid and Interface Science.

[80]  Dongqing Li,et al.  Modeling forced liquid convection in rectangular microchannels with electrokinetic effects , 1998 .

[81]  J. Chai,et al.  Joule heating effect on electroosmotic flow and mass species transport in a microcapillary , 2004 .