Search for dark matter with CRESST
暂无分享,去创建一个
[1] J. Hewett,et al. Dark matter in the MSSM , 2009, 0903.4409.
[2] S. Uchaikin,et al. A cryogenic calorimeter based on a superconducting phase transition thermometer with thermal feedback and SQUID read out , 1999 .
[3] G. Drake,et al. Experimental constraints on a dark matter origin for the DAMA annual modulation effect. , 2008, Physical review letters.
[4] F. Feilitzsch,et al. Properties of Tungsten Thin Films Produced with the RF-Sputtering Technique , 2008 .
[5] S. Tremaine,et al. Galactic Dynamics , 2005 .
[6] Wolfgang Seidel,et al. Glued CaWO4 detectors for the CRESST-II experiment , 2009 .
[7] E. García,et al. Recent Performance of Scintillating Bolometers Developed for Dark Matter Searches , 2008 .
[8] F. Danevich,et al. Growth of ${\rm ZnWO}_{4}$ Crystal Scintillators for High Sensitivity $2\beta$ Experiments , 2008, IEEE Transactions on Nuclear Science.
[9] S. Uchaikin,et al. Light detector development for CRESST II , 2004 .
[10] N. Coron,et al. Scintillating and optical spectroscopy of Al2O3:Ti for dark matter searches , 2009 .
[11] L. Stodolsky,et al. The CRESST dark matter search , 1998, astro-ph/0411396.
[12] B. W. James,et al. The elastic constants of calcium tungstate, 4.2-300 K , 1973 .
[13] F. Feilitzsch,et al. Development of a cryogenic detection concept for GNO , 2004 .
[14] A. Nucciotti,et al. Model for cryogenic particle detectors with superconducting phase transition thermometers , 1995 .
[15] G. Bertone,et al. Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.
[16] N. Coron,et al. Alpha/gamma discrimination with a CaF2(Eu) target bolometer optically coupled to a composite infrared bolometer , 1997 .
[17] B. Cabrera. Introduction to TES Physics , 2008 .
[18] C. Brandle. Czochralski growth of oxides , 2004 .
[19] M. Pavan,et al. CdWO4 bolometers for double beta decay search , 2008, 0809.5126.
[20] L. Oberauer,et al. Development of a Cryogenic Detector for Coherent Neutrino Nucleus Scattering , 2008 .
[21] S. Moseley,et al. Thermal detectors as X-ray spectrometers , 1984 .
[22] M. Moszynski,et al. Low-temperature spectroscopic and scintillation characterisation of Ti-doped Al2O3 , 2005 .
[23] F. Feilitzsch,et al. Characterization of the Response of CaWO4 on Recoiling Nuclei from Surface Alpha Decays , 2008 .
[24] J. Ellis,et al. Update on the direct detection of dark matter in MSSM models with non-universal Higgs masses , 2009, 0905.0107.
[25] Effects of galactic dark halo rotation on WIMP direct detection , 1998, hep-ph/9803295.
[26] J. W. Gibson,et al. SUPERCONDUCTIVITY OF TUNGSTEN , 1964 .
[27] Mario Martínez,et al. A BGO scintillating bolometer as dark matter detector prototype , 2009 .
[28] M. Chapellier. Considerations on thermal effects in doped scintillators for dark matter and other rare events searches , 2009 .
[29] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[30] S. Kim,et al. Development of CaMoO(4) crystal scintillators for double beta decay experiment with Mo-100 , 2007 .
[31] D. Hauff,et al. Development of cryogenic phonon detectors based on CaMoO4 and ZnWO4 scintillating crystals for direct dark matter search experiments , 2008, 0811.1786.
[32] J. W. Gibson,et al. SUPERCONDUCTIVITY OF IRIDIUM , 1962 .
[33] L. Stodolsky,et al. Electron and gamma background in CRESST detectors , 2009, 0905.4282.
[34] F. Feilitzsch,et al. Neutron scattering facility for characterization of CRESST and EURECA detectors at mK temperatures , 2008, 0810.0132.
[35] D. McCammon,et al. Physical Principles of Low Temperature Detectors: Ultimate Performance Limits and Current Detector Capabilities , 2008 .
[36] A. Scharmann,et al. On the intrinsic nature of the blue luminescence in CaWO4 , 1982 .
[37] J. Engel. Nuclear form factors for the scattering of weakly interacting massive particles , 1991 .
[38] S. Cebrián,et al. Bolometric WIMP search at Canfranc with different absorbers , 2004 .
[39] V. Mikhailik,et al. Cryogenic scintillators in searches for extremely rare events , 2006 .
[40] P. Gennes. Boundary Effects in Superconductors , 1964 .
[41] R. Finkel,et al. A multi-radionuclide approach for in situ produced terrestrial cosmogenic nuclides: 10Be, 26Al, 36Cl and 41Ca from carbonate rocks , 2010 .
[42] F. Feilitzsch,et al. Cryogenic composite detectors for the dark matter experiments CRESST and EURECA , 2008 .
[43] Maris. Phonon propagation with isotope scattering and spontaneous anharmonic decay. , 1990, Physical review. B, Condensed matter.
[44] K. B. Hutton,et al. Feasibility study of a ZnWO4 scintillator for exploiting materials signature in cryogenic WIMP dark matter searches , 2005 .
[45] H. Kraus,et al. Scintillation studies of CaWO4 in the millikelvin temperature range , 2007 .
[46] B. Majorovits,et al. The 66-channel SQUID readout for CRESST II , 2007 .
[47] D. Perret-Gallix,et al. Detection of Low-energy Solar Neutrinos and Galactic Dark Matter With Crystal Scintillators , 1989 .
[48] L. Stodolsky,et al. Interpretation of light-quenching factor measurements , 2007, 0707.0766.
[49] C. A. Stover,et al. Giant birefringent optics in multilayer polymer mirrors , 2000, Science.
[50] J. B. Birks,et al. The Theory and Practice of Scintillation Counting , 1965 .
[51] N. Weiner,et al. Inelastic dark matter , 2001, hep-ph/0101138.
[52] L. Stodolsky,et al. Limits on WIMP dark matter using sapphire cryogenic detectors , 2002 .
[53] C. Arpesella. Background measurements at Gran Sasso Laboratory , 1992 .
[54] Fracture Processes Observed with A Cryogenic Detector , 2005, physics/0504151.
[55] A. J. Hughes,et al. Results from the first science run of the ZEPLIN-III dark matter search experiment , 2008, 0812.1150.
[56] Michael M. Frank,et al. Proximity effect in iridium‐gold bilayers , 1994 .
[57] L. Stodolsky,et al. Quasiparticle diffusion over several mm in cryogenic detectors , 2001 .
[58] M. Moszynski,et al. Characterization of CaWO 4 scintillator at room and liquid nitrogen temperatures , 2005 .
[59] D. Lynden-Bell,et al. Review of galactic constants , 1986 .
[60] O. Palamara,et al. First results from a dark matter search with liquid argon at 87 K in the Gran Sasso underground laboratory , 2008 .
[61] Measurement of nuclear recoil quenching factors in CaWO4 , 2006 .
[62] E. Baltz,et al. Improved constraints on supersymmetric dark matter from muon g -2 , 2002, astro-ph/0207673.
[63] L. Stodolsky,et al. Commissioning run of the CRESST-II dark matter search , 2008, 0809.1829.
[64] M. Pospelov,et al. Big Bang nucleosynthesis and particle dark matter , 2009, 0906.2087.
[65] L. Stodolsky,et al. Investigation of ${\hbox {ZnWO}}_{4}$ Crystals as Scintillating Absorbers for Direct Dark Matter Search Experiments , 2008, IEEE Transactions on Nuclear Science.
[66] P. Luke. Voltage‐assisted calorimetric ionization detector , 1988 .
[67] T. Jagemann. Measurement of the Scintillation Light Quenching for Nuclear Recoils induced by Neutron Scattering in Detectors for Dark Matter Particles , 2004 .
[68] L. Stodolsky,et al. Limits on WIMP dark matter using scintillating CaWO4 cryogenic detectors with active background suppression , 2004, astro-ph/0408006.
[69] D. Fink,et al. 41Ca: Measurement by accelerator mass spectrometry and applications , 1990 .
[70] R. W. Ogburn,et al. Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the soudan underground laboratory. , 2008, Physical review letters.
[71] G. Kribs,et al. Inelastic Dark Matter in Light of DAMA/LIBRA , 2008, 0807.2250.
[72] N. R. Werthamer,et al. THEORY OF THE SUPERCONDUCTING TRANSITION TEMPERATURE AND ENERGY GAP FUNCTION OF SUPERPOSED METAL FILMS , 1963 .
[73] L. Stodolsky,et al. CRESST-II: dark matter search with scintillating absorbers , 2004 .
[74] Durham,et al. Phase-space structure in the local dark matter distribution and its signature in direct detection experiments , 2008, 0812.0362.
[75] Fracture processes studied in CRESST , 2006 .
[76] F. Feilitzsch,et al. Detector calibration measurements in CRESST , 2006 .
[77] K. Nassau,et al. Calcium Tungstate: Czochralski Growth, Perfection, and Substitution , 1962 .
[78] D. Camin,et al. Development of a thermal scintillating detector for double beta decay of 48Ca , 1992 .
[79] K. Griest,et al. Supersymmetric dark matter , 1992 .
[80] B. C. Grabmaier. Crystal Scintillators , 1984, IEEE Transactions on Nuclear Science.
[81] R. Orbach,et al. The attenuation of high frequency phonons at low temperatures , 1964 .
[82] F. von Feilitzsch,et al. Phase transition thermometers with high temperature resolution for calorimetric particle detectors employing dielectric absorbers , 1990 .
[83] V. Kobychev,et al. α activity of natural tungsten isotopes , 2002, nucl-ex/0211013.
[84] V. Malvezzi,et al. PAMELA and indirect dark matter searches , 2009 .
[85] Munich,et al. New technique for the measurement of the scintillation efficiency of nuclear recoils , 2006, astro-ph/0604094.
[86] Excitation functions of proton induced nuclear reactions on natW up to 40 MeV , 2008 .
[87] P. Gondolo,et al. Model-independent form factors for spin-independent neutralino–nucleon scattering from elastic electron scattering data , 2006, hep-ph/0608035.
[88] Konstantin T. Matchev,et al. Shedding light on the dark sector with direct WIMP production , 2009, 0902.2000.
[89] F. Feilitzsch,et al. Quenching factor measurement for CaWO4 by neutron scattering , 2006 .
[90] C. Kittel. Introduction to solid state physics , 1954 .
[91] L. Bergström. Dark matter candidates , 2009 .
[92] C. Hailey. An indirect search for dark matter using antideuterons: the GAPS experiment , 2009 .
[93] C. Winant,et al. First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory. , 2007, Physical review letters.
[94] M. Battaglia. The role of an e+e− linear collider in the study of cosmic dark matter , 2009 .
[95] B. Paul,et al. EURECA – setting the scene for scintillators , 2009 .
[96] W. Seidel,et al. Development of superconducting absorbers for CRESST light detectors , 2009 .
[97] Richard H. Helm,et al. Inelastic and Elastic Scattering of 187-Mev Electrons from Selected Even-Even Nuclei , 1956 .
[98] M. Honma,et al. Rotation Curve of the Galaxy , 1997 .
[99] H. Baer,et al. Collider, direct and indirect detection of supersymmetric dark matter , 2009, 0903.0555.
[100] G. Sciolla,et al. Gaseous dark matter detectors , 2009, 0905.3675.
[101] A. Pahlke,et al. Application of the Neganov-Luke Effect for Scintillation Light Detection , 2008 .
[102] M. Gros,et al. EURECA — the European Future of Dark Matter Searches with Cryogenic Detectors , 2007 .
[103] Michael M. Frank,et al. A massive cryogenic particle detector with good energy resolution , 1994 .
[104] V. Kobychev,et al. ZnWO 4 crystals as detectors for 2 β decay and dark matter experiments , 2004 .
[105] L. Schoeffel,et al. Final results of the EDELWEISS-I dark matter search with cryogenic heat-and-ionization Ge detectors , 2005, astro-ph/0503265.
[106] S. Vanzetto,et al. The SciCryo Project and Cryogenic Scintillation of Al2O3 for Dark Matter , 2008 .
[107] D. Gubser,et al. Thermodynamic properties of superconducting iridium , 1973 .
[108] L. Stodolsky,et al. Detection of the natural α decay of tungsten , 2004, nucl-ex/0408006.
[109] Hans Kraus,et al. ZnWO4 scintillators for cryogenic dark matter experiments , 2009 .
[110] Brittle fracture down to femto-Joules - and below , 2007, 0708.4315.
[111] F. Feilitzsch,et al. Neutron scattering facility for the measurement of nuclear recoil quenching factors , 2005 .
[112] D. Hooper,et al. Gamma rays from dark matter annihilation in the central region of the Galaxy , 2009, 0902.2539.
[113] J. D. Lewin,et al. Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil , 1996 .
[114] I. Solskii,et al. Temperature dependence of CaMoO4 scintillation properties , 2007 .