Search for dark matter with CRESST

The search for direct interactions of dark matter particles remains one of the most pressing challenges of contemporary experimental physics. A variety of different approaches is required to probe the available parameter space and to meet the technological challenges. Here, we review the experimental efforts towards the detection of direct dark matter interactions using scintillating crystals at cryogenic temperatures. We outline the ideas behind these detectors and describe the principles of their operation. Recent developments are summarized and various results from the search for rare processes are presented. In the search for direct dark matter interactions, the CRESST-II experiment delivers competitive limits, with a sensitivity below 5×10-7 pb on the coherent WIMP-nucleon cross section.

[1]  J. Hewett,et al.  Dark matter in the MSSM , 2009, 0903.4409.

[2]  S. Uchaikin,et al.  A cryogenic calorimeter based on a superconducting phase transition thermometer with thermal feedback and SQUID read out , 1999 .

[3]  G. Drake,et al.  Experimental constraints on a dark matter origin for the DAMA annual modulation effect. , 2008, Physical review letters.

[4]  F. Feilitzsch,et al.  Properties of Tungsten Thin Films Produced with the RF-Sputtering Technique , 2008 .

[5]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[6]  Wolfgang Seidel,et al.  Glued CaWO4 detectors for the CRESST-II experiment , 2009 .

[7]  E. García,et al.  Recent Performance of Scintillating Bolometers Developed for Dark Matter Searches , 2008 .

[8]  F. Danevich,et al.  Growth of ${\rm ZnWO}_{4}$ Crystal Scintillators for High Sensitivity $2\beta$ Experiments , 2008, IEEE Transactions on Nuclear Science.

[9]  S. Uchaikin,et al.  Light detector development for CRESST II , 2004 .

[10]  N. Coron,et al.  Scintillating and optical spectroscopy of Al2O3:Ti for dark matter searches , 2009 .

[11]  L. Stodolsky,et al.  The CRESST dark matter search , 1998, astro-ph/0411396.

[12]  B. W. James,et al.  The elastic constants of calcium tungstate, 4.2-300 K , 1973 .

[13]  F. Feilitzsch,et al.  Development of a cryogenic detection concept for GNO , 2004 .

[14]  A. Nucciotti,et al.  Model for cryogenic particle detectors with superconducting phase transition thermometers , 1995 .

[15]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[16]  N. Coron,et al.  Alpha/gamma discrimination with a CaF2(Eu) target bolometer optically coupled to a composite infrared bolometer , 1997 .

[17]  B. Cabrera Introduction to TES Physics , 2008 .

[18]  C. Brandle Czochralski growth of oxides , 2004 .

[19]  M. Pavan,et al.  CdWO4 bolometers for double beta decay search , 2008, 0809.5126.

[20]  L. Oberauer,et al.  Development of a Cryogenic Detector for Coherent Neutrino Nucleus Scattering , 2008 .

[21]  S. Moseley,et al.  Thermal detectors as X-ray spectrometers , 1984 .

[22]  M. Moszynski,et al.  Low-temperature spectroscopic and scintillation characterisation of Ti-doped Al2O3 , 2005 .

[23]  F. Feilitzsch,et al.  Characterization of the Response of CaWO4 on Recoiling Nuclei from Surface Alpha Decays , 2008 .

[24]  J. Ellis,et al.  Update on the direct detection of dark matter in MSSM models with non-universal Higgs masses , 2009, 0905.0107.

[25]  Effects of galactic dark halo rotation on WIMP direct detection , 1998, hep-ph/9803295.

[26]  J. W. Gibson,et al.  SUPERCONDUCTIVITY OF TUNGSTEN , 1964 .

[27]  Mario Martínez,et al.  A BGO scintillating bolometer as dark matter detector prototype , 2009 .

[28]  M. Chapellier Considerations on thermal effects in doped scintillators for dark matter and other rare events searches , 2009 .

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  S. Kim,et al.  Development of CaMoO(4) crystal scintillators for double beta decay experiment with Mo-100 , 2007 .

[31]  D. Hauff,et al.  Development of cryogenic phonon detectors based on CaMoO4 and ZnWO4 scintillating crystals for direct dark matter search experiments , 2008, 0811.1786.

[32]  J. W. Gibson,et al.  SUPERCONDUCTIVITY OF IRIDIUM , 1962 .

[33]  L. Stodolsky,et al.  Electron and gamma background in CRESST detectors , 2009, 0905.4282.

[34]  F. Feilitzsch,et al.  Neutron scattering facility for characterization of CRESST and EURECA detectors at mK temperatures , 2008, 0810.0132.

[35]  D. McCammon,et al.  Physical Principles of Low Temperature Detectors: Ultimate Performance Limits and Current Detector Capabilities , 2008 .

[36]  A. Scharmann,et al.  On the intrinsic nature of the blue luminescence in CaWO4 , 1982 .

[37]  J. Engel Nuclear form factors for the scattering of weakly interacting massive particles , 1991 .

[38]  S. Cebrián,et al.  Bolometric WIMP search at Canfranc with different absorbers , 2004 .

[39]  V. Mikhailik,et al.  Cryogenic scintillators in searches for extremely rare events , 2006 .

[40]  P. Gennes Boundary Effects in Superconductors , 1964 .

[41]  R. Finkel,et al.  A multi-radionuclide approach for in situ produced terrestrial cosmogenic nuclides: 10Be, 26Al, 36Cl and 41Ca from carbonate rocks , 2010 .

[42]  F. Feilitzsch,et al.  Cryogenic composite detectors for the dark matter experiments CRESST and EURECA , 2008 .

[43]  Maris Phonon propagation with isotope scattering and spontaneous anharmonic decay. , 1990, Physical review. B, Condensed matter.

[44]  K. B. Hutton,et al.  Feasibility study of a ZnWO4 scintillator for exploiting materials signature in cryogenic WIMP dark matter searches , 2005 .

[45]  H. Kraus,et al.  Scintillation studies of CaWO4 in the millikelvin temperature range , 2007 .

[46]  B. Majorovits,et al.  The 66-channel SQUID readout for CRESST II , 2007 .

[47]  D. Perret-Gallix,et al.  Detection of Low-energy Solar Neutrinos and Galactic Dark Matter With Crystal Scintillators , 1989 .

[48]  L. Stodolsky,et al.  Interpretation of light-quenching factor measurements , 2007, 0707.0766.

[49]  C. A. Stover,et al.  Giant birefringent optics in multilayer polymer mirrors , 2000, Science.

[50]  J. B. Birks,et al.  The Theory and Practice of Scintillation Counting , 1965 .

[51]  N. Weiner,et al.  Inelastic dark matter , 2001, hep-ph/0101138.

[52]  L. Stodolsky,et al.  Limits on WIMP dark matter using sapphire cryogenic detectors , 2002 .

[53]  C. Arpesella Background measurements at Gran Sasso Laboratory , 1992 .

[54]  Fracture Processes Observed with A Cryogenic Detector , 2005, physics/0504151.

[55]  A. J. Hughes,et al.  Results from the first science run of the ZEPLIN-III dark matter search experiment , 2008, 0812.1150.

[56]  Michael M. Frank,et al.  Proximity effect in iridium‐gold bilayers , 1994 .

[57]  L. Stodolsky,et al.  Quasiparticle diffusion over several mm in cryogenic detectors , 2001 .

[58]  M. Moszynski,et al.  Characterization of CaWO 4 scintillator at room and liquid nitrogen temperatures , 2005 .

[59]  D. Lynden-Bell,et al.  Review of galactic constants , 1986 .

[60]  O. Palamara,et al.  First results from a dark matter search with liquid argon at 87 K in the Gran Sasso underground laboratory , 2008 .

[61]  Measurement of nuclear recoil quenching factors in CaWO4 , 2006 .

[62]  E. Baltz,et al.  Improved constraints on supersymmetric dark matter from muon g -2 , 2002, astro-ph/0207673.

[63]  L. Stodolsky,et al.  Commissioning run of the CRESST-II dark matter search , 2008, 0809.1829.

[64]  M. Pospelov,et al.  Big Bang nucleosynthesis and particle dark matter , 2009, 0906.2087.

[65]  L. Stodolsky,et al.  Investigation of ${\hbox {ZnWO}}_{4}$ Crystals as Scintillating Absorbers for Direct Dark Matter Search Experiments , 2008, IEEE Transactions on Nuclear Science.

[66]  P. Luke Voltage‐assisted calorimetric ionization detector , 1988 .

[67]  T. Jagemann Measurement of the Scintillation Light Quenching for Nuclear Recoils induced by Neutron Scattering in Detectors for Dark Matter Particles , 2004 .

[68]  L. Stodolsky,et al.  Limits on WIMP dark matter using scintillating CaWO4 cryogenic detectors with active background suppression , 2004, astro-ph/0408006.

[69]  D. Fink,et al.  41Ca: Measurement by accelerator mass spectrometry and applications , 1990 .

[70]  R. W. Ogburn,et al.  Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the soudan underground laboratory. , 2008, Physical review letters.

[71]  G. Kribs,et al.  Inelastic Dark Matter in Light of DAMA/LIBRA , 2008, 0807.2250.

[72]  N. R. Werthamer,et al.  THEORY OF THE SUPERCONDUCTING TRANSITION TEMPERATURE AND ENERGY GAP FUNCTION OF SUPERPOSED METAL FILMS , 1963 .

[73]  L. Stodolsky,et al.  CRESST-II: dark matter search with scintillating absorbers , 2004 .

[74]  Durham,et al.  Phase-space structure in the local dark matter distribution and its signature in direct detection experiments , 2008, 0812.0362.

[75]  Fracture processes studied in CRESST , 2006 .

[76]  F. Feilitzsch,et al.  Detector calibration measurements in CRESST , 2006 .

[77]  K. Nassau,et al.  Calcium Tungstate: Czochralski Growth, Perfection, and Substitution , 1962 .

[78]  D. Camin,et al.  Development of a thermal scintillating detector for double beta decay of 48Ca , 1992 .

[79]  K. Griest,et al.  Supersymmetric dark matter , 1992 .

[80]  B. C. Grabmaier Crystal Scintillators , 1984, IEEE Transactions on Nuclear Science.

[81]  R. Orbach,et al.  The attenuation of high frequency phonons at low temperatures , 1964 .

[82]  F. von Feilitzsch,et al.  Phase transition thermometers with high temperature resolution for calorimetric particle detectors employing dielectric absorbers , 1990 .

[83]  V. Kobychev,et al.  α activity of natural tungsten isotopes , 2002, nucl-ex/0211013.

[84]  V. Malvezzi,et al.  PAMELA and indirect dark matter searches , 2009 .

[85]  Munich,et al.  New technique for the measurement of the scintillation efficiency of nuclear recoils , 2006, astro-ph/0604094.

[86]  Excitation functions of proton induced nuclear reactions on natW up to 40 MeV , 2008 .

[87]  P. Gondolo,et al.  Model-independent form factors for spin-independent neutralino–nucleon scattering from elastic electron scattering data , 2006, hep-ph/0608035.

[88]  Konstantin T. Matchev,et al.  Shedding light on the dark sector with direct WIMP production , 2009, 0902.2000.

[89]  F. Feilitzsch,et al.  Quenching factor measurement for CaWO4 by neutron scattering , 2006 .

[90]  C. Kittel Introduction to solid state physics , 1954 .

[91]  L. Bergström Dark matter candidates , 2009 .

[92]  C. Hailey An indirect search for dark matter using antideuterons: the GAPS experiment , 2009 .

[93]  C. Winant,et al.  First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory. , 2007, Physical review letters.

[94]  M. Battaglia The role of an e+e− linear collider in the study of cosmic dark matter , 2009 .

[95]  B. Paul,et al.  EURECA – setting the scene for scintillators , 2009 .

[96]  W. Seidel,et al.  Development of superconducting absorbers for CRESST light detectors , 2009 .

[97]  Richard H. Helm,et al.  Inelastic and Elastic Scattering of 187-Mev Electrons from Selected Even-Even Nuclei , 1956 .

[98]  M. Honma,et al.  Rotation Curve of the Galaxy , 1997 .

[99]  H. Baer,et al.  Collider, direct and indirect detection of supersymmetric dark matter , 2009, 0903.0555.

[100]  G. Sciolla,et al.  Gaseous dark matter detectors , 2009, 0905.3675.

[101]  A. Pahlke,et al.  Application of the Neganov-Luke Effect for Scintillation Light Detection , 2008 .

[102]  M. Gros,et al.  EURECA — the European Future of Dark Matter Searches with Cryogenic Detectors , 2007 .

[103]  Michael M. Frank,et al.  A massive cryogenic particle detector with good energy resolution , 1994 .

[104]  V. Kobychev,et al.  ZnWO 4 crystals as detectors for 2 β decay and dark matter experiments , 2004 .

[105]  L. Schoeffel,et al.  Final results of the EDELWEISS-I dark matter search with cryogenic heat-and-ionization Ge detectors , 2005, astro-ph/0503265.

[106]  S. Vanzetto,et al.  The SciCryo Project and Cryogenic Scintillation of Al2O3 for Dark Matter , 2008 .

[107]  D. Gubser,et al.  Thermodynamic properties of superconducting iridium , 1973 .

[108]  L. Stodolsky,et al.  Detection of the natural α decay of tungsten , 2004, nucl-ex/0408006.

[109]  Hans Kraus,et al.  ZnWO4 scintillators for cryogenic dark matter experiments , 2009 .

[110]  Brittle fracture down to femto-Joules - and below , 2007, 0708.4315.

[111]  F. Feilitzsch,et al.  Neutron scattering facility for the measurement of nuclear recoil quenching factors , 2005 .

[112]  D. Hooper,et al.  Gamma rays from dark matter annihilation in the central region of the Galaxy , 2009, 0902.2539.

[113]  J. D. Lewin,et al.  Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil , 1996 .

[114]  I. Solskii,et al.  Temperature dependence of CaMoO4 scintillation properties , 2007 .