An implicit integration procedure for an elasto-viscoplastic model and its application to thermomechanical fatigue design of automotive parts

Thermomechanical fatigue (TMF) design has nowadays become essential for many industrial parts and cyclic elasto-viscoplastic constitutive models and their numerical integration are the crucial point of the problem. The paper first presents an implicit time integration scheme for an advanced constitutive model. This scheme is based on the return-mapping algorithm and proposes a use of the viscoplastic multiplier which enables to avoid Jacobian matrixes inversion and high computational cost. This peculiar numerical model is then integrated in a comprehensive computational TMF lifetime approach. The couple is shown to give the best agreement in terms of TMF lifetime estimation when compared with more simple TMF design approaches and an other constitutive model.

[1]  J. Chaboche Constitutive equations for cyclic plasticity and cyclic viscoplasticity , 1989 .

[2]  Fernand Ellyin,et al.  In-phase and out-of-phase multiaxial fatigue , 1991 .

[3]  W. J. Ostergren,et al.  A DAMAGE FUNCTION AND ASSOCIATED FAILURE EQUATIONS FOR PREDICTING HOLD TIME AND FREQUENCY EFFECTS IN ELEVATED TEMPERATURE, LOW CYCLE FATIGUE , 1976 .

[4]  A. Argon Internal stresses arising from the interaction of mobile dislocations , 1970 .

[5]  Y. Garud A New Approach to the Evaluation of Fatigue Under Multiaxial Loadings , 1981 .

[6]  K. Dang Van,et al.  Fatigue design of structures under thermomechanical loadings , 2002 .

[7]  Frédéric Feyel,et al.  Structural calculation and lifetime-prediction in thermomechanical fatigue of engine components , 2002 .

[8]  Thomas J. R. Hughes,et al.  Unconditionally stable algorithms for quasi-static elasto/visco-plastic finite element analysis , 1978 .

[9]  Myriam Bourgeois,et al.  New flow rules in elasto-viscoplastic constitutive models for spheroidal graphite cast-iron , 2010 .

[10]  M. Reger,et al.  High temperature, low cycle fatigue of IN-100 superalloy I: Influence of temperature on the low cycle fatigue behaviour , 1988 .

[11]  J. C. Simo,et al.  Variational Formulation, Discrete Conservation Laws, and Path-Domain Independent Integrals for Elasto-Viscoplasticity , 1990 .

[12]  L. Rémy,et al.  The slip character and low cycle fatigue behaviour: The influence of F.C.C. twinning and strain-induced F.C.C. → H.C.P. martensitic transformation , 1980 .

[13]  J. Ju Consistent Tangent Moduli for a Class of Viscoplasticity , 1990 .

[14]  Jean-Louis Chaboche,et al.  Thermodynamic formulation of constitutive equations and application to the viscoplasticity and viscoelasticity of metals and polymers , 1997 .

[15]  F. Dunne,et al.  Comparative assessment of dissipated energy and other fatigue criteria , 2007 .

[16]  H. Riedel,et al.  Mechanism-based thermomechanical fatigue life prediction of cast iron. Part II: Comparison of model predictions with experiments , 2010 .

[17]  L. Rémy,et al.  Low cycle fatigue damage in nickel-base superalloy single crystals at elevated temperature , 1993 .

[18]  Nguyen Quoc Son On the elastic plastic initial‐boundary value problem and its numerical integration , 1977 .

[19]  L. Rémy,et al.  An engineering model for low cycle fatigue life based on a partition of energy and micro-crack growth , 2009 .

[20]  L. Rémy,et al.  High temperature low cycle fatigue of MAR-M 509 superalloy I: The influence of temperature on the low cycle fatigue behaviour from 20 to 1100°C , 1983 .

[21]  B. Cassenti,et al.  Creep, Plasticity, and Fatigue of Single Crystal Superalloy. (Preprint) , 2011 .

[22]  R. P. Skelton,et al.  Energy criterion for high temperature low cycle fatigue failure , 1991 .

[23]  Erhard Krempl,et al.  Viscoplastic models for high temperature applications , 2000 .

[24]  Georges Cailletaud,et al.  Integration methods for complex plastic constitutive equations , 1996 .

[25]  Eric Charkaluk,et al.  A computational approach to thermomechanical fatigue , 2004 .

[26]  Hans-Jürgen Christ,et al.  Thermomechanical fatigue of cast aluminium alloys for cylinder head applications–experimental characterization and life prediction , 2010 .

[27]  B. Tomkins FATIGUE CRACK PROPAGATION: AN ANALYSIS. , 1968 .

[28]  E. Charkaluk,et al.  Thermomechanical fatigue in the automotive industry , 2002 .

[29]  J. Fernández-Sáez,et al.  An implicit consistent algorithm for the integration of thermoviscoplastic constitutive equations in adiabatic conditions and finite deformations , 2006 .

[30]  Jean-Jacques Thomas,et al.  Détermination de la réponse asymptotique d'une structure anélastique sous chargement thermomécanique cyclique , 2002 .

[31]  Thomas Seifert,et al.  Mechanism-based thermomechanical fatigue life prediction of cast iron. Part I: Models , 2010 .

[32]  Atef F. Saleeb,et al.  Robust integration schemes for generalized viscoplasticity with internal-state variables. Part 1: Theoretical developments and applications , 1995 .

[33]  Jean-Louis Chaboche,et al.  A NON‐LINEAR CONTINUOUS FATIGUE DAMAGE MODEL , 1988 .

[34]  Luc Rémy,et al.  THERMAL FATIGUE OF MAR-M509 SUPERALLOY—II. EVALUATION OF LIFE PREDICTION MODELS , 1988 .

[35]  Jean-Louis Chaboche,et al.  A review of some plasticity and viscoplasticity constitutive theories , 2008 .

[36]  Guozheng Kang,et al.  A visco-plastic constitutive model for ratcheting of cyclically stable materials and its finite element implementation , 2004 .

[37]  L. Rémy,et al.  Constitutive models for bcc engineering iron alloys exposed to thermal–mechanical fatigue , 2013 .

[38]  Yi-Shao Lai,et al.  Optimal design towards enhancement of board-level thermomechanical reliability of wafer-level chip-scale packages , 2007, Microelectron. Reliab..

[39]  Michael Ortiz,et al.  An analysis of a new class of integration algorithms for elastoplastic constitutive relations , 1986 .

[40]  H. Maier,et al.  Validating the predictive capabilities: A key issue in modelling thermomechanical fatigue life , 2002 .

[41]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[42]  Fabien Szmytka,et al.  Behavior, damage and fatigue life assessment of lost foam casting aluminum alloys under thermo-mechanical fatigue conditions , 2010 .

[43]  M. H. Maitournam,et al.  Cyclic behaviour of structures under thermomechanical loadings: Application to exhaust manifolds , 2012 .

[44]  Martin Riedler,et al.  Thermo-mechanical fatigue life assessment of aluminium components using the damage rate model of Sehitoglu , 2008 .

[45]  P. Dufrénoy,et al.  Damage mechanisms and thermomechanical loading of brake discs , 2002 .

[46]  W. T. Koiter General theorems for elastic plastic solids , 1960 .

[47]  Giulio Alfano,et al.  General solution procedures in elasto/viscoplasticity , 2001 .

[48]  L. Rémy Thermal-mechanical fatigue (including thermal shock) , 2003 .

[49]  M. Wilkins Calculation of Elastic-Plastic Flow , 1963 .

[50]  P. M. Naghdi,et al.  On the Mechanical Behavior of Viscoelastic/Plastic Solids , 1963 .

[51]  Phani K. V. V. Nukala,et al.  A return mapping algorithm for cyclic viscoplastic constitutive models , 2006 .

[52]  L. Remy,et al.  Fatigue oxidation interaction in a superalloy—application to life prediction in high temperature low cycle fatigue , 1983 .

[53]  K. Ho A unified constitutive law for cyclic viscoplasticity , 2009 .

[54]  R. H. Wagoner,et al.  A FE formulation for elasto-plastic materials with planar anisotropic yield functions and plastic spin , 2002 .

[55]  Nicolas Marchal,et al.  Growth of small cracks and prediction of lifetime in high-temperature alloys , 2007 .

[56]  Georges Cailletaud,et al.  On the design of single crystal turbine blades , 2003 .