Multi-partite quantum cryptographic protocols with noisy GHZ States

We propose a wide class of distillation schemes for multi-partite entangled states that are CSS-states. Our proposal provides not only superior efficiency, but also new insights on the connection between CSS-states and bipartite graph states. We then apply our distillation schemes to the tri-partite case for three cryptographic tasks|namely, (a) conference key agreement, (b) quantum sharing of classical secrets and (c) third-man cryptography. Moreover, we construct "prepare-and-measure" protocols for the above three cryptographic tasks which can be implemented with the generation of only a single entangled pair at a time. This gives significant simplification over previous experimental implementations which require two entangled pairs generated simultaneously. We also study the yields of those protocols and the threshold values of the fidelity above which the protocols can function securely. Rather surprisingly, our protocols will function securely even when the initial state does not violate the standard Bell-inequalities for GHZ states.

[1]  J. Ignacio Cirac,et al.  On the structure of a reversible entanglement generating set for tripartite states , 2003, Quantum Inf. Comput..

[2]  J. Cirac,et al.  Separability and Distillability of Multiparticle Quantum Systems , 1999, quant-ph/9903018.

[3]  W Dür,et al.  Multiparticle entanglement purification for graph states. , 2003, Physical review letters.

[4]  J. Smolin,et al.  Improved two-party and multi-party purification protocols , 2000, quant-ph/0003099.

[5]  Cambridge,et al.  Multi-Particle Entanglement Purification Protocols , 1997, Technical Digest. 1998 EQEC. European Quantum Electronics Conference (Cat. No.98TH8326).

[6]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[7]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[8]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[9]  Hoi-Kwong Lo,et al.  Efficient Quantum Key Distribution Scheme and a Proof of Its Unconditional Security , 2004, Journal of Cryptology.

[10]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[11]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[12]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[13]  염흥렬,et al.  [서평]「Applied Cryptography」 , 1997 .

[14]  Dominic Mayers,et al.  Quantum Key Distribution and String Oblivious Transfer in Noisy Channels , 1996, CRYPTO.

[15]  D. Gottesman Theory of quantum secret sharing , 1999, quant-ph/9910067.

[16]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[17]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[18]  Hoi-Kwong Lo,et al.  Proof of unconditional security of six-state quantum key distribution scheme , 2001, Quantum Inf. Comput..

[19]  Pawel Horodecki,et al.  Distillation and bound entanglement , 2001, Quantum Inf. Comput..

[20]  J. Cirac,et al.  Classification of multiqubit mixed states: Separability and distillability properties , 1999, quant-ph/9911044.

[21]  Hoi-Kwong Lo,et al.  Proof of security of quantum key distribution with two-way classical communications , 2001, IEEE Trans. Inf. Theory.

[22]  John Preskill,et al.  Secure quantum key distribution using squeezed states , 2001 .

[23]  Jian-Wei Pan,et al.  Experimental quantum secret sharing and third-man quantum cryptography. , 2005, Physical review letters.

[24]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[25]  Adam D. Smith Quantum secret sharing for general access structures , 2000 .

[26]  MayersDominic Unconditional security in quantum cryptography , 2001 .

[27]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[28]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[29]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.