QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks

The advent of noisy intermediate-scale quantum (NISQ) computers raises a crucial challenge to design quantum neural networks for fully quantum learning tasks. To bridge the gap, this work proposes an end-to-end learning framework named QTN-VQC, by introducing a trainable quantum tensor network (QTN) for quantum embedding on a variational quantum circuit (VQC). The architecture of QTN is composed of a parametric tensor-train network for feature extraction and a tensor product encoding for quantum embedding. We highlight the QTN for quantum embedding in terms of two perspectives: (1) we theoretically characterize QTN by analyzing its representation power of input features; (2) QTN enables an end-to-end parametric model pipeline, namely QTN-VQC, from the generation of quantum embedding to the output measurement. Our experiments on the MNIST dataset demonstrate the advantages of QTN for quantum embedding over other quantum embedding approaches.

[1]  Maria Schuld,et al.  Supervised Learning with Quantum Computers , 2018 .

[2]  Chin-Hui Lee,et al.  Decentralizing Feature Extraction with Quantum Convolutional Neural Network for Automatic Speech Recognition , 2021, ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[3]  A. Skolik,et al.  Quantum agents in the Gym: a variational quantum algorithm for deep Q-learning , 2021, 2103.15084.

[4]  Forrest N. Iandola,et al.  SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size , 2016, ArXiv.

[5]  Lei Wang,et al.  Differentiable Learning of Quantum Circuit Born Machine , 2018, Physical Review A.

[6]  Andrew R. Barron,et al.  Approximation and estimation bounds for artificial neural networks , 2004, Machine Learning.

[7]  Alexander Novikov,et al.  Tensorizing Neural Networks , 2015, NIPS.

[8]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[9]  Maria Schuld,et al.  Quantum Machine Learning in Feature Hilbert Spaces. , 2018, Physical review letters.

[10]  Ying-Jer Kao,et al.  Hybrid quantum-classical classifier based on tensor network and variational quantum circuit , 2020, ArXiv.

[11]  F. Leymann,et al.  The bitter truth about gate-based quantum algorithms in the NISQ era , 2020, Quantum Science and Technology.

[12]  David Z. Pan,et al.  QuantumNAS: Noise-Adaptive Search for Robust Quantum Circuits , 2021, 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA).

[13]  Chin-Hui Lee,et al.  Exploring Deep Hybrid Tensor-to-Vector Network Architectures for Regression Based Speech Enhancement , 2020, INTERSPEECH.

[14]  Yisong Yue,et al.  Long-term Forecasting using Tensor-Train RNNs , 2017, ArXiv.

[15]  Masoud Mohseni,et al.  Power of data in quantum machine learning , 2020, Nature Communications.

[16]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[17]  Efficient state preparation for a register of quantum bits (13 pages) , 2004, quant-ph/0408045.

[18]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[19]  Nathan Killoran,et al.  PennyLane: Automatic differentiation of hybrid quantum-classical computations , 2018, ArXiv.

[20]  Hans-J. Briegel,et al.  Quantum-enhanced machine learning , 2016, Physical review letters.

[21]  T. Schulte-Herbrüggen,et al.  Computations in quantum tensor networks , 2012, 1212.5005.

[22]  Zhengyu Zhang,et al.  An efficient quantum algorithm for generative machine learning , 2017, ArXiv.

[23]  Volker Tresp,et al.  Tensor-Train Recurrent Neural Networks for Video Classification , 2017, ICML.

[24]  Eric Smalley,et al.  AI-powered drug discovery captures pharma interest , 2017, Nature Biotechnology.

[25]  Román Orús,et al.  Tensor networks for complex quantum systems , 2018, Nature Reviews Physics.

[26]  Marcello Benedetti,et al.  Parameterized quantum circuits as machine learning models , 2019, Quantum Science and Technology.

[27]  Alexander Novikov,et al.  Ultimate tensorization: compressing convolutional and FC layers alike , 2016, ArXiv.

[28]  Simon Marshall,et al.  Variational quantum policies for reinforcement learning , 2021, ArXiv.

[29]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[30]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[31]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[32]  Maxwell Henderson,et al.  Quanvolutional neural networks: powering image recognition with quantum circuits , 2019, Quantum Machine Intelligence.

[33]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[34]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[35]  Yong Peng,et al.  CTNN: A Convolutional Tensor-Train Neural Network for Multi-Task Brainprint Recognition , 2020, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[36]  Ors Legeza,et al.  Simulating strongly correlated quantum systems with tree tensor networks , 2010, 1006.3095.

[37]  Satoshi Nakamura,et al.  Compressing recurrent neural network with tensor train , 2017, 2017 International Joint Conference on Neural Networks (IJCNN).

[38]  Chao-Han Huck Yang,et al.  Variational Quantum Circuits for Deep Reinforcement Learning , 2019, IEEE Access.

[39]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[40]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[41]  Lea M. Trenkwalder,et al.  Reinforcement learning for optimization of variational quantum circuit architectures , 2021, NeurIPS.

[42]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[43]  Jingling Li,et al.  Final Report: Expressive Power of Parametrized Quantum Circuits , 2019 .

[44]  Valeria Saggio,et al.  Quantum speed-ups in reinforcement learning , 2021, NanoScience + Engineering.

[45]  Chin-Hui Lee,et al.  Tensor-To-Vector Regression for Multi-Channel Speech Enhancement Based on Tensor-Train Network , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[46]  Seungjin Choi,et al.  Supervised Learning , 2009, Encyclopedia of Biometrics.

[47]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[48]  Xiang Zhang,et al.  OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks , 2013, ICLR.

[49]  A. Prakash,et al.  Quantum Algorithms for Deep Convolutional Neural Networks , 2019, ICLR.

[50]  K. Birgitta Whaley,et al.  Towards quantum machine learning with tensor networks , 2018, Quantum Science and Technology.

[51]  Geoffrey Zweig,et al.  Recent advances in deep learning for speech research at Microsoft , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[52]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[53]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[54]  David H. Freedman,et al.  Hunting for New Drugs with AI , 2019, Nature.

[55]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[56]  Mingyue Ding,et al.  Phase Angle-Encoded and Quantum-Behaved Particle Swarm Optimization Applied to Three-Dimensional Route Planning for UAV , 2012, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[57]  Seth Lloyd,et al.  Quantum embeddings for machine learning , 2020 .

[58]  Dacheng Tao,et al.  Quantum noise protects quantum classifiers against adversaries , 2020, Physical Review Research.