Chemically Derived Graphene Oxide: Towards Large‐Area Thin‐Film Electronics and Optoelectronics

Chemically derived graphene oxide (GO) possesses a unique set of properties arising from oxygen functional groups that are introduced during chemical exfoliation of graphite. Large‐area thin‐film deposition of GO, enabled by its solubility in a variety of solvents, offers a route towards GO‐based thin‐film electronics and optoelectronics. The electrical and optical properties of GO are strongly dependent on its chemical and atomic structure and are tunable over a wide range via chemical engineering. In this Review, the fundamental structure and properties of GO‐based thin films are discussed in relation to their potential applications in electronics and optoelectronics.

[1]  F. Zhuge,et al.  Nonvolatile resistive switching in graphene oxide thin films , 2009 .

[2]  Zhuang Liu,et al.  PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. , 2008, Journal of the American Chemical Society.

[3]  John W. May,et al.  Platinum surface LEED rings , 1969 .

[4]  Yang Yang,et al.  Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. , 2009, Nano letters.

[5]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[6]  Andrea Chipman,et al.  A commodity no more , 2007, Nature.

[7]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO2. , 2007, Nature nanotechnology.

[8]  M. Bocquet,et al.  Graphene on metal surfaces , 2009 .

[9]  G. Amaratunga,et al.  Field emission from graphene based composite thin films , 2008 .

[10]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Tascón,et al.  Preparation of graphene dispersions and graphene-polymer composites in organic media , 2009 .

[12]  M. Waldrop,et al.  Science 2.0. , 2008, Scientific American.

[13]  W. D. de Heer,et al.  Observing the Quantization of Zero Mass Carriers in Graphene , 2009, Science.

[14]  J. Robinson,et al.  Wafer-scale reduced graphene oxide films for nanomechanical devices. , 2008, Nano letters.

[15]  R. Czerw,et al.  N-doping and coalescence of carbon nanotubes: synthesis and electronic properties , 2002 .

[16]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[17]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[18]  Minghong Wu,et al.  Hydrothermal Route for Cutting Graphene Sheets into Blue‐Luminescent Graphene Quantum Dots , 2010, Advanced materials.

[19]  P. Kim,et al.  Quantum interference and Klein tunnelling in graphene heterojunctions , 2008, Nature Physics.

[20]  Mo Song,et al.  Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents , 2007 .

[21]  S. Stankovich,et al.  Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets , 2006 .

[22]  E. J. Mele,et al.  Photoluminescence and band gap modulation in graphene oxide , 2009 .

[23]  Sandip Niyogi,et al.  Solution properties of graphite and graphene. , 2006, Journal of the American Chemical Society.

[24]  S. Sarma,et al.  Measurement of scattering rate and minimum conductivity in graphene. , 2007, Physical review letters.

[25]  Yongsheng Chen,et al.  Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation , 2009 .

[26]  Lenneke H. Slooff,et al.  Photoinduced Electron Transfer and Photovoltaic Response of a MDMO‐PPV:TiO2 Bulk‐Heterojunction , 2003 .

[27]  Kian Ping Loh,et al.  Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties , 2009 .

[28]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[29]  Dimitrios Gournis,et al.  Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids , 2003 .

[30]  E. Samulski,et al.  Synthesis of water soluble graphene. , 2008, Nano letters.

[31]  Kang L. Wang,et al.  A chemical route to graphene for device applications. , 2007, Nano letters.

[32]  Yajie Xu,et al.  Superelastic and Spring Properties of Si3N4 Microcoils , 2008 .

[33]  Roberto Car,et al.  Functionalized single graphene sheets derived from splitting graphite oxide. , 2006, The journal of physical chemistry. B.

[34]  S. Stankovich,et al.  Preparation and characterization of graphene oxide paper , 2007, Nature.

[35]  Dongmin Chen,et al.  Synthesis and Solid-State NMR Structural Characterization of 13C-Labeled Graphite Oxide , 2008, Science.

[36]  Roland G. S. Goh,et al.  Band‐like Transport in Surface‐Functionalized Highly Solution‐Processable Graphene Nanosheets , 2008 .

[37]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[38]  W. Yu,et al.  Graphene oxide thin film field effect transistors without reduction , 2009 .

[39]  Freddy Yin Chiang Boey,et al.  Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase , 2009 .

[40]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[41]  W. Eccleston,et al.  Ultra-low-threshold field emission from conjugated polymers , 1998, Nature.

[42]  Juhwan Kim,et al.  Efficient Polymer Solar Cells with Surface Relief Gratings Fabricated by Simple Soft Lithography , 2008 .

[43]  Qian Liu,et al.  Organic photovoltaic cells based on an acceptor of soluble graphene , 2008 .

[44]  David Tománek,et al.  Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks. , 2005, Journal of the American Chemical Society.

[45]  G. Pan,et al.  Polymer Photovoltaic Cells Based on Solution‐Processable Graphene and P3HT , 2009 .

[46]  G. Eda,et al.  Graphene-based composite thin films for electronics. , 2009, Nano letters.

[47]  Wei Chen,et al.  Deoxidation of graphene oxide nanosheets to extended graphenites by "unzipping" elimination. , 2008, The Journal of chemical physics.

[48]  M. Dresselhaus,et al.  Raman spectroscopy in graphene , 2009 .

[49]  Xin Lu,et al.  Fast and Facile Preparation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets , 2009 .

[50]  S. Dong,et al.  Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. , 2009, Analytical chemistry.

[51]  M I Katsnelson,et al.  Modeling of graphite oxide. , 2008, Journal of the American Chemical Society.

[52]  Franklin Kim,et al.  Langmuir-Blodgett assembly of graphite oxide single layers. , 2009, Journal of the American Chemical Society.

[53]  M. Itkis,et al.  Graphite Nanoplatelet−Epoxy Composite Thermal Interface Materials , 2007 .

[54]  R. Ruoff,et al.  Possibilities for graphene for field emission: modeling studies using the BEM , 2008 .

[55]  E. Matuyama Pyrolysis of Graphitic Acid , 1954 .

[56]  R. Latham,et al.  Enhanced cold-cathode emission using composite resin-carbon coatings , 1988 .

[57]  Zhenan Bao,et al.  Organic light-emitting diodes on solution-processed graphene transparent electrodes. , 2010, ACS nano.

[58]  R. Huggins Solid State Ionics , 1989 .

[59]  Jae-Young Choi,et al.  Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance , 2009 .

[60]  G. Amaratunga,et al.  Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy , 2000 .

[61]  K. Novoselov,et al.  Graphene-based liquid crystal device. , 2008, Nano letters (Print).

[62]  S. Sampath,et al.  Electrochemical Reduction of Oriented Graphene Oxide Films: An in Situ Raman Spectroelectrochemical Study , 2009 .

[63]  Tsuyoshi Nakajima,et al.  A new structure model of graphite oxide , 1988 .

[64]  Yan Wang,et al.  A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency , 2009 .

[65]  Xiaoniu Yang,et al.  Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. , 2005, The journal of physical chemistry. B.

[66]  K. Novoselov,et al.  Making graphene luminescent by oxygen plasma treatment. , 2009, ACS nano.

[67]  R. Sundaram,et al.  Electrochemical Modification of Graphene , 2008 .

[68]  Bei Wang,et al.  FACILE SYNTHESIS AND CHARACTERIZATION OF GRAPHENE NANOSHEETS , 2008 .

[69]  Xiaosong Wu,et al.  Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. , 2007, Physical review letters.

[70]  B. Hsieh,et al.  Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy , 1996 .

[71]  P. Kamat,et al.  TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. , 2008, ACS nano.

[72]  J. Rogers Electronic materials: making graphene for macroelectronics. , 2008, Nature nanotechnology.

[73]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[74]  Charge transfer induced polarity switching in carbon nanotube transistors. , 2005, Nano letters.

[75]  H. B. Weber,et al.  Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. , 2009, Nature materials.

[76]  C. Rao,et al.  Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques , 2008 .

[77]  T. Ebbesen,et al.  Role of sp3 defect structures in graphite and carbon nanotubes , 1994, Nature.

[78]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[79]  J. Coleman,et al.  Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions , 2008, 0809.2690.

[80]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[81]  Junhong Chen,et al.  Facile, noncovalent decoration of graphene oxide sheets with nanocrystals , 2009 .

[82]  J. Robertson Diamond-like amorphous carbon , 2002 .

[83]  Ji Won Suk,et al.  Graphene-based actuators. , 2010, Small.

[84]  G. Eda,et al.  Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization , 2007 .

[85]  G. Flynn,et al.  High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface , 2007, Proceedings of the National Academy of Sciences.

[86]  C. H. Seager,et al.  Percolation and conductivity: A computer study. II , 1974 .

[87]  H. Dai,et al.  Highly conducting graphene sheets and Langmuir-Blodgett films. , 2008, Nature nanotechnology.

[88]  J. D. Lopez-Gonzalez,et al.  Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization , 1995 .

[89]  Arjun G. Yodh,et al.  High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water , 2003 .

[90]  Xu Du,et al.  Approaching ballistic transport in suspended graphene. , 2008, Nature nanotechnology.

[91]  Rodney S. Ruoff,et al.  Transparent self-assembled films of reduced graphene oxide platelets , 2009 .

[92]  R. Ruoff,et al.  Chemical methods for the production of graphenes. , 2009, Nature nanotechnology.

[93]  Simultaneous nitrogen doping and reduction of graphene oxide. , 2009, Journal of the American Chemical Society.

[94]  M. Melucci,et al.  High-contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching. , 2009, Journal of the American Chemical Society.

[95]  Zhuang Liu,et al.  Nano-graphene oxide for cellular imaging and drug delivery , 2008, Nano research.

[96]  J. Coleman,et al.  Charge transport effects in field emission from carbon nanotube-polymer composites , 2005 .

[97]  L. Staudenmaier,et al.  Verfahren zur Darstellung der Graphitsäure , 1898 .

[98]  N. Mohanty,et al.  Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. , 2008, Nano letters.

[99]  S. Stankovich,et al.  Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy , 2009 .

[100]  Vladimir I. Fal'ko,et al.  Visibility of graphene flakes on a dielectric substrate , 2007, 0705.0091.

[101]  J. Tascón,et al.  Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[102]  A. Srivastava,et al.  A facile and novel synthesis of Ag-graphene-based nanocomposites. , 2009, Small.

[103]  Xiong Zhang,et al.  Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. , 2009, Chemical communications.

[104]  Marc D Porter,et al.  Fabrication of optically transparent carbon electrodes by the pyrolysis of photoresist films: approach to single-molecule spectroelectrochemistry. , 2006, Analytical chemistry.

[105]  L. Drzal,et al.  A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid-liquid interface. , 2009, Nano letters.

[106]  François M. Peeters,et al.  From graphene to graphite : Electronic structure around the K point , 2006 .

[107]  C. Uher,et al.  T2 dependence of the in-plane resistivity of graphite at very low temperatures , 1984 .

[108]  Liangbing Hu,et al.  Percolation in transparent and conducting carbon nanotube networks , 2004 .

[109]  K. Novoselov,et al.  Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. , 2007, Nature materials.

[110]  Alexandra Buchsteiner,et al.  Water dynamics in graphite oxide investigated with neutron scattering. , 2006, The journal of physical chemistry. B.

[111]  P. Avouris,et al.  Strong suppression of electrical noise in bilayer graphene nanodevices. , 2008, Nano letters.

[112]  H. P. Boehm,et al.  NOMENCLATURE AND TERMINOLOGY OF GRAPHITE INTERCALATION COMPOUNDS , 1986 .

[113]  M. Chou,et al.  Structural and electronic properties of oxidized graphene. , 2009, Physical review letters.

[114]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[115]  E. Snow,et al.  Role of defects in single-walled carbon nanotube chemical sensors. , 2006, Nano letters.

[116]  J. Klinowski,et al.  13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives , 1997 .

[117]  A. Govindaraj,et al.  Graphene: the new two-dimensional nanomaterial. , 2009, Angewandte Chemie.

[118]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[119]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[120]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[121]  Qian Liu,et al.  Organic Photovoltaic Devices Based on a Novel Acceptor Material: Graphene , 2008 .

[122]  M. Dresselhaus,et al.  Studying disorder in graphite-based systems by Raman spectroscopy. , 2007, Physical chemistry chemical physics : PCCP.

[123]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[124]  Klaus Müllen,et al.  Patterned Graphene Electrodes from Solution‐Processed Graphite Oxide Films for Organic Field‐Effect Transistors , 2009 .

[125]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[126]  R. Kaner,et al.  Honeycomb carbon: a review of graphene. , 2010, Chemical reviews.

[127]  Jacek Klinowski,et al.  A new structural model for graphite oxide , 1998 .

[128]  Cheol-Woong Yang,et al.  Evidence of graphitic AB stacking order of graphite oxides. , 2008, Journal of the American Chemical Society.

[129]  B. Z. Jang,et al.  Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review , 2008, Journal of Materials Science.

[130]  Klaus Kern,et al.  Atomic hole doping of graphene. , 2008, Nano letters.

[131]  John Silcox,et al.  Atomic and electronic structure of graphene-oxide. , 2009, Nano letters.

[132]  R. Grisdale The Properties of Carbon Contacts , 1953 .

[133]  R Martel,et al.  Carbon nanotubes as schottky barrier transistors. , 2002, Physical review letters.

[134]  R. Czerw,et al.  Substrate-interface interactions between carbon nanotubes and the supporting substrate , 2002 .

[135]  R. Kaner,et al.  Graphene-like nano-sheets for surface acoustic wave gas sensor applications , 2009 .

[136]  S. Stankovich,et al.  Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide , 2007 .

[137]  H. R. Krishnamurthy,et al.  Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. , 2008, Nature nanotechnology.

[138]  S. Stankovich,et al.  Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate) , 2006 .

[139]  R. Sundaram,et al.  Graphene Monolayers: Chemical Vapor Deposition Repair of Graphene Oxide: A Route to Highly‐Conductive Graphene Monolayers (Adv. Mater. 46/2009) , 2009 .

[140]  N. Mott,et al.  Electronic Processes In Non-Crystalline Materials , 1940 .

[141]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[142]  Richard Beanland,et al.  Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. , 2009, ACS nano.

[143]  Ming Zhou,et al.  Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. , 2009, Chemistry.

[144]  Joerg Appenzeller,et al.  Screening and interlayer coupling in multilayer graphene field-effect transistors. , 2009, Nano letters.

[145]  Gaetano Granozzi,et al.  Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films , 2009 .

[146]  Robert P. H. Chang,et al.  Field emission from nanotube bundle emitters at low fields , 1997 .

[147]  Chun-Wei Chen,et al.  Transparent and conducting electrodes for organic electronics from reduced graphene oxide , 2008 .

[148]  Visualizing graphene based sheets by fluorescence quenching microscopy. , 2009, Journal of the American Chemical Society.

[149]  Hisato Yamaguchi,et al.  Insulator to Semimetal Transition in Graphene Oxide , 2009 .

[150]  Kian Ping Loh,et al.  Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing , 2010, Advanced materials.

[151]  A Gupta,et al.  Raman scattering from high-frequency phonons in supported n-graphene layer films. , 2006, Nano letters.

[152]  Young Hee Lee,et al.  DENSITY FUNCTIONAL THEORY STUDY OF GRAPHITE OXIDE FOR DIFFERENT OXIDATION LEVELS , 2009 .

[153]  R. Stoltenberg,et al.  Evaluation of solution-processed reduced graphene oxide films as transparent conductors. , 2008, ACS nano.

[154]  U Zeitler,et al.  Room-Temperature Quantum Hall Effect in Graphene , 2007, Science.

[155]  T. Michely,et al.  Structural coherency of graphene on Ir(111). , 2008, Nano letters.

[156]  D. Fischer,et al.  Large-Area Chemically Modified Graphene Films: Electrophoretic Deposition and Characterization by Soft X-ray Absorption Spectroscopy , 2009 .

[157]  T. Ebbesen,et al.  Graphene in 3‐dimensions: Towards graphite origami , 1995 .

[158]  K. Jenkins,et al.  Operation of graphene transistors at gigahertz frequencies. , 2008, Nano letters.

[159]  U. Hofmann,et al.  Quellung von Graphit und die Bildung von Graphitsäure , 1930 .

[160]  Tobin J Marks,et al.  Organic light-emitting diodes having carbon nanotube anodes. , 2006, Nano letters.

[161]  Can Xue,et al.  In Situ Synthesis of Metal Nanoparticles on Single-Layer Graphene Oxide and Reduced Graphene Oxide Surfaces , 2009 .

[162]  K. Loh,et al.  One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. , 2009, ACS nano.

[163]  M. Chhowalla,et al.  Design criteria for transparent single-wall carbon nanotube thin-film transistors. , 2006, Nano letters.

[164]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[165]  Yang Yang,et al.  High-throughput solution processing of large-scale graphene. , 2009, Nature nanotechnology.

[166]  M. I. Katsnelson,et al.  Chiral tunnelling and the Klein paradox in graphene , 2006 .

[167]  Kian Ping Loh,et al.  High mobility, printable, and solution-processed graphene electronics. , 2010, Nano letters.

[168]  D. Goldhaber-Gordon,et al.  Evidence of the role of contacts on the observed electron-hole asymmetry in graphene , 2008, 0804.2040.

[169]  Masahiro Fujiwara,et al.  Thin-film particles of graphite oxide 1:: High-yield synthesis and flexibility of the particles , 2004 .

[170]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[171]  Jianwen Zhao,et al.  Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers , 2009 .

[172]  A. Clauss,et al.  Dünnste Kohlenstoff-Folien , 1962 .

[173]  P. Sheehan,et al.  The assembly of single-layer graphene oxide and graphene using molecular templates. , 2008, Nano letters.

[174]  Chao Zhang,et al.  One‐Step Ionic‐Liquid‐Assisted Electrochemical Synthesis of Ionic‐Liquid‐Functionalized Graphene Sheets Directly from Graphite , 2008 .

[175]  Xiaojun Weng,et al.  Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale. , 2009, Nano letters.

[176]  R. Piner,et al.  Scanning probe microscopy study of exfoliated oxidized graphene sheets , 2008 .

[177]  R. Car,et al.  Raman spectra of graphite oxide and functionalized graphene sheets. , 2008, Nano letters.

[178]  K. Novoselov,et al.  Giant intrinsic carrier mobilities in graphene and its bilayer. , 2007, Physical review letters.

[179]  G. Eda,et al.  Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. , 2008, Nature nanotechnology.

[180]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[181]  S. Wind,et al.  Field-modulated carrier transport in carbon nanotube transistors. , 2002, Physical review letters.

[182]  Huafeng Yang,et al.  Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. , 2009, Chemical communications.

[183]  Imre Dékány,et al.  Evolution of surface functional groups in a series of progressively oxidized graphite oxides , 2006 .

[184]  Rodolfo Cruz-Silva,et al.  Flash reduction and patterning of graphite oxide and its polymer composite. , 2009, Journal of the American Chemical Society.

[185]  J. Tascón,et al.  Graphene oxide dispersions in organic solvents. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[186]  Imre Dékány,et al.  Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides , 2006 .

[187]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[188]  Prashant V. Kamat,et al.  Decorating Graphene Sheets with Gold Nanoparticles , 2008 .

[189]  G. Wallace,et al.  Processable aqueous dispersions of graphene nanosheets. , 2008, Nature nanotechnology.

[190]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[191]  A. B. Kaiser,et al.  Electrical conduction mechanism in chemically derived graphene monolayers. , 2009, Nano letters.

[192]  J. M. Cowley,et al.  An electron diffraction study of graphitic oxide , 1963 .

[193]  Mild sonochemical exfoliation of bromine-intercalated graphite: a new route towards graphene , 2009, 0905.4451.

[194]  Rodney S. Ruoff,et al.  Effect of Water Vapor on Electrical Properties of Individual Reduced Graphene Oxide Sheets , 2008 .

[195]  Yan Wang,et al.  Infrared-Triggered Actuators from Graphene-Based Nanocomposites , 2009 .

[196]  Wei Gao,et al.  New insights into the structure and reduction of graphite oxide. , 2009, Nature chemistry.

[197]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[198]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[199]  Zhongqing Wei,et al.  Reduced graphene oxide molecular sensors. , 2008, Nano letters.

[200]  K. Novoselov,et al.  Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane , 2008, Science.

[201]  Janos H. Fendler,et al.  Preparation and Characterization of Ultrathin Films Layer-by-Layer Self-Assembled from Graphite Oxide Nanoplatelets and Polymers , 2000 .

[202]  S. Roth,et al.  Sonochemical Optimization of the Conductivity of Single Wall Carbon Nanotube Networks , 2008 .

[203]  Robert C. Haddon,et al.  Soluble graphene derived from graphite fluoride , 2007 .

[204]  Eun Sung Kim,et al.  Thermal stability of graphite oxide , 2009 .

[205]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[206]  N. Mohanty,et al.  High-throughput, ultrafast synthesis of solution- dispersed graphene via a facile hydride chemistry. , 2010, Small.

[207]  Yongsheng Chen,et al.  Photoconductivity of bulk-film-based graphene sheets. , 2009, Small.

[208]  Rodney S. Ruoff,et al.  Characterization of Thermally Reduced Graphene Oxide by Imaging Ellipsometry , 2008 .

[209]  T. Ebbesen Physical Properties of Carbon Nanotubes , 1997 .

[210]  Rodney S. Ruoff,et al.  Tailoring graphite with the goal of achieving single sheets , 1999 .

[211]  J. Robertson,et al.  Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[212]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[213]  A. Reina,et al.  Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. , 2009, Nano letters.

[214]  P. J. Ollivier,et al.  Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations , 1999 .

[215]  Yan Wang,et al.  Molecular‐Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites , 2009 .

[216]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[217]  Emmanuel Kymakis,et al.  Single-wall carbon nanotube/conjugated polymer photovoltaic devices , 2002 .

[218]  Jacek Klinowski,et al.  Solid-State NMR Studies of the Structure of Graphite Oxide , 1996 .

[219]  R. Ruoff,et al.  Epoxide reduction with hydrazine on graphene: a first principles study. , 2009, The Journal of chemical physics.

[220]  Philip Kim,et al.  Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices , 2004, cond-mat/0410314.

[221]  B. H. Weiller,et al.  Practical chemical sensors from chemically derived graphene. , 2009, ACS nano.

[222]  R. Fowler,et al.  Electron Emission in Intense Electric Fields , 1928 .

[223]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[224]  J. Gilman,et al.  Nanotechnology , 2001 .

[225]  C. Hierold,et al.  Spatially resolved Raman spectroscopy of single- and few-layer graphene. , 2006, Nano letters.

[226]  G. Eda,et al.  Highly uniform 300 mm wafer-scale deposition of single and multilayered chemically derived graphene thin films. , 2009, ACS nano.

[227]  Jian-Hao Chen,et al.  Defect scattering in graphene. , 2009, Physical review letters.

[228]  K. Loh,et al.  Multilayer Hybrid Films Consisting of Alternating Graphene and Titania Nanosheets with Ultrafast Electron Transfer and Photoconversion Properties , 2009 .

[229]  Guoliang Zhang,et al.  Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation , 2008 .

[230]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[231]  D. Gournis,et al.  Large-yield preparation of high-electronic-quality graphene by a Langmuir-Schaefer approach. , 2010, Small.

[232]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[233]  J. E. Crombeen,et al.  LEED and Auger electron observations of the SiC(0001) surface , 1975 .

[234]  Meihua Jin,et al.  Tailoring the characteristics of graphite oxides by different oxidation times , 2009 .

[235]  Klaus Kern,et al.  Electronic transport properties of individual chemically reduced graphene oxide sheets. , 2007, Nano letters.

[236]  Xin Wang,et al.  Graphene−Metal Particle Nanocomposites , 2008 .

[237]  Xingfa Gao,et al.  Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design , 2010 .

[238]  L. Brinson,et al.  Functionalized graphene sheets for polymer nanocomposites. , 2008, Nature nanotechnology.

[239]  Lain-Jong Li,et al.  Doping single-layer graphene with aromatic molecules. , 2009, Small.

[240]  Gehan A. J. Amaratunga,et al.  Low-threshold cold cathodes made of nitrogen-doped chemical-vapour-deposited diamond , 1996, Nature.

[241]  Martina Hausner,et al.  Simple Approach for High-Contrast Optical Imaging and Characterization of Graphene-Based Sheets , 2007, 0706.0029.

[242]  Zhenan Bao,et al.  Organic solar cells with solution-processed graphene transparent electrodes , 2008 .

[243]  R. Car,et al.  Oxygen-driven unzipping of graphitic materials. , 2006, Physical review letters.

[244]  J. M. Cowley,et al.  Structure of Graphitic Oxide , 1962, Nature.

[245]  Robertson,et al.  Electronic and atomic structure of amorphous carbon. , 1987, Physical review. B, Condensed matter.

[246]  M. Rodríguez-Pérez,et al.  Functionalized graphene sheet filled silicone foam nanocomposites , 2008 .

[247]  Vitor M. Pereira,et al.  Modeling disorder in graphene , 2007, 0712.0806.

[248]  W. Bao,et al.  Phase-Coherent Transport in Graphene Quantum Billiards , 2007, Science.

[249]  R. Car,et al.  Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite , 2007 .

[250]  H. Dai,et al.  Solvothermal reduction of chemically exfoliated graphene sheets. , 2009, Journal of the American Chemical Society.

[251]  Jacek Klinowski,et al.  Structure of Graphite Oxide Revisited , 1998 .

[252]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[253]  S. Stankovich,et al.  Graphene-silica composite thin films as transparent conductors. , 2007, Nano letters.

[254]  Warren Lee,et al.  Field emitting inks for consumer-priced broad-area flat-panel displays , 2000 .

[255]  Shixin Wu,et al.  Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. , 2010, Small.

[256]  J. Flege,et al.  Epitaxial graphene on ruthenium. , 2008, Nature materials.

[257]  Benjamin Collins Brodie,et al.  On the Atomic Weight of Graphite , 1859 .

[258]  Inhwa Jung,et al.  Tunable electrical conductivity of individual graphene oxide sheets reduced at "low" temperatures. , 2008, Nano letters.

[259]  C. N. R. Rao,et al.  Graphene, the new nanocarbon , 2009 .