TLR9-Dependent and -Independent Activates Dendritic Cells via Endosomal Translocation of Vertebrate DNA

Hochrein and Hermann WagnerSchlatter, Frank Schmitz, Antje Heit, Stefan Bauer, HubertusKei Yasuda, Philipp Yu, Carsten J. Kirschning, Beatrixhttp://www.jimmunol.org/content/174/10/6129J Immunol€2005; 174:6129-6136; ;Referenceshttp://www.jimmunol.org/content/174/10/6129.full#ref-list-1This article cites 44 articles, 20 of which you can access for free at: Subscriptionshttp://jimmunol.org/subscriptionsInformation about subscribing to The Journal of Immunology is online at: Permissionshttp://www.aai.org/ji/copyright.htmlSubmit copyright permission requests at: Email Alertshttp://jimmunol.org/cgi/alerts/etocReceive free email-alerts when new articles cite this article. Sign up at:

[1]  H. Yoshida,et al.  Lethal anemia caused by interferon-β produced in mouse embryos carrying undigested DNA , 2005, Nature Immunology.

[2]  D. Klinman,et al.  Suppressive Oligodeoxynucleotides Inhibit Th1 Differentiation by Blocking IFN-γ- and IL-12-Mediated Signaling1 , 2004, The Journal of Immunology.

[3]  P. Payette,et al.  Oligodeoxynucleotides lacking CpG dinucleotides mediate Toll‐like receptor 9 dependent T helper type 2 biased immune stimulation , 2004, Immunology.

[4]  J. Metzger,et al.  Toll‐like receptor 9 binds single‐stranded CpG‐DNA in a sequence‐ and pH‐dependent manner , 2004, European journal of immunology.

[5]  F. Schmitz,et al.  Herpes simplex virus type-1 induces IFN-α production via Toll-like receptor 9-dependent and -independent pathways , 2004 .

[6]  H. Wagner The immunobiology of the TLR9 subfamily. , 2004, Trends in immunology.

[7]  A. Krieg,et al.  Induction of autoantibody production but not autoimmune disease in HEL transgenic mice vaccinated with HEL in combination with CpG or control oligodeoxynucleotides. , 2004, Vaccine.

[8]  S. Akira,et al.  Toll-like Receptor 9–Dependent and –Independent Dendritic Cell Activation by Chromatin–Immunoglobulin G Complexes , 2004, The Journal of experimental medicine.

[9]  Shizuo Akira,et al.  Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA , 2004, Science.

[10]  S. Akira,et al.  Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8 , 2004, Science.

[11]  M. Capron,et al.  Methylated CpG‐Containing Plasmid Activates the Immune System , 2004, Scandinavian journal of immunology.

[12]  S. Akira,et al.  Contribution of Toll-like receptor 9 signaling to the acute inflammatory response to nonviral vectors. , 2004, Molecular therapy : the journal of the American Society of Gene Therapy.

[13]  B. Monks,et al.  TLR9 signals after translocating from the ER to CpG DNA in the lysosome , 2004, Nature Immunology.

[14]  D. Busch,et al.  Vaccination with Plasmid DNA Activates Dendritic Cells via Toll-Like Receptor 9 (TLR9) but Functions in TLR9-Deficient Mice 1 , 2003, The Journal of Immunology.

[15]  S. Akira,et al.  The Toll‐like receptor 7 (TLR7)‐specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily , 2003, European journal of immunology.

[16]  J. M. Rodríguez,et al.  Strong Cytosine-Guanosine-Independent Immunostimulation in Humans and Other Primates by Synthetic Oligodeoxynucleotides with PyNTTTTGT Motifs , 2003, The Journal of Immunology.

[17]  V. Gopal,et al.  Cationic lipids and cationic ligands induce DNA helix denaturation: detection of single stranded regions by KMnO4 probing , 2003, FEBS letters.

[18]  A. Yamamoto,et al.  Subcellular Localization of Toll-Like Receptor 3 in Human Dendritic Cells 1 , 2003, The Journal of Immunology.

[19]  Jongdae Lee,et al.  Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: Activation of Toll-like receptor 7 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  David A. Hume,et al.  The Molecular Basis for the Lack of Immunostimulatory Activity of Vertebrate DNA1 , 2003, The Journal of Immunology.

[21]  D. Busch,et al.  Cutting Edge: Toll-Like Receptor 9 Expression Is Not Required for CpG DNA-Aided Cross-Presentation of DNA-Conjugated Antigens but Essential for Cross-Priming of CD8 T Cells1 , 2003, The Journal of Immunology.

[22]  Y. Baba,et al.  Cationic liposome-mediated gene delivery: biophysical study and mechanism of internalization. , 2003, Archives of biochemistry and biophysics.

[23]  G. Trinchieri,et al.  Flexibility of Mouse Classical and Plasmacytoid-derived Dendritic Cells in Directing T Helper Type 1 and 2 Cell Development , 2003, The Journal of experimental medicine.

[24]  T. Takai Roles of Fc receptors in autoimmunity , 2002, Nature Reviews Immunology.

[25]  G. Tamura,et al.  B Cells Capturing Antigen Conjugated with CpG Oligodeoxynucleotides Induce Th1 Cells by Elaborating IL-121 , 2002, The Journal of Immunology.

[26]  R. Vabulas,et al.  Bacterial CpG‐DNA and lipopolysaccharides activate Toll‐like receptors at distinct cellular compartments , 2002, European journal of immunology.

[27]  M. Hashida,et al.  Plasmid DNA activates murine macrophages to induce inflammatory cytokines in a CpG motif-independent manner by complex formation with cationic liposomes. , 2002, Biochemical and biophysical research communications.

[28]  M. Shlomchik,et al.  Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors , 2002, Nature.

[29]  A. Krieg,et al.  CpG motifs in bacterial DNA and their immune effects. , 2002, Annual review of immunology.

[30]  L. Rönnblom,et al.  Importance of CpG Dinucleotides in Activation of Natural IFN‐α‐Producing Cells by a Lupus‐Related Oligodeoxynucleotide , 2001, Scandinavian journal of immunology.

[31]  Cevayir Coban,et al.  Genomic DNA Released by Dying Cells Induces the Maturation of APCs1 2 , 2001, The Journal of Immunology.

[32]  S. Akira,et al.  Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  V. Hornung,et al.  Identification of CpG oligonucleotide sequences with high induction of IFN‐α/β in plasmacytoid dendritic cells , 2001 .

[34]  J. Ellwart,et al.  Bacterial CpG-DNA Triggers Activation and Maturation of Human CD11c−, CD123+ Dendritic Cells1 , 2001, The Journal of Immunology.

[35]  K. Ishii,et al.  Human Peripheral Blood Cells Differentially Recognize and Respond to Two Distinct CpG Motifs1 2 , 2001, The Journal of Immunology.

[36]  S. Akira,et al.  A Toll-like receptor recognizes bacterial DNA , 2000, Nature.

[37]  L. Rönnblom,et al.  Anti-double-stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-alpha inducer in systemic lupus erythematosus. , 1999, Journal of immunology.

[38]  R. Kasukawa,et al.  CpG motif-containing DNA fragments from sera of patients with systemic lupus erythematosus proliferate mononuclear cells in vitro. , 1999, The Journal of rheumatology.

[39]  H. Wagner,et al.  Bacterial CpG DNA activates immune cells to signal infectious danger. , 1999, Advances in immunology.

[40]  H. Mischak,et al.  CpG‐DNA‐specific activation of antigen‐presenting cells requires stress kinase activity and is preceded by non‐specific endocytosis and endosomal maturation , 1998, The EMBO journal.

[41]  T. Wu,et al.  Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[42]  B. Ramsahoye,et al.  DNA methylation: biology and significance. , 1996, Blood reviews.

[43]  G. Bishop,et al.  CpG motifs in bacterial DNA trigger direct B-cell activation , 1995, Nature.

[44]  A. Bird,et al.  Functions for DNA methylation in vertebrates. , 1993, Cold Spring Harbor symposia on quantitative biology.