Local and Global Canonical Forms for Differential-Algebraic Equations with Symmetries

Linear time-varying differential-algebraic equations with symmetries are studied. The structures that we address are self-adjoint and skew-adjoint systems. Local and global canonical forms under congruence are presented and used to classify the geometric properties of the flow associated with the differential equation as symplectic or generalized orthogonal flow. As applications, the results are applied to the analysis of dissipative Hamiltonian systems arising from circuit simulation and incompressible flow.

[1]  Manfred Hiller,et al.  Multibody system dynamics and mechatronics , 2006 .

[2]  Volker Mehrmann,et al.  Optimal control for unstructured nonlinear differential-algebraic equations of arbitrary index , 2008, Math. Control. Signals Syst..

[3]  Volker Mehrmann,et al.  Structure-preserving discretization for port-Hamiltonian descriptor systems , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[4]  Alfio Quarteroni,et al.  Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .

[5]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[6]  V. Mehrmann,et al.  Port-Hamiltonian formulations of poroelastic network models , 2020, Mathematical and Computer Modelling of Dynamical Systems.

[7]  A. Schaft Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems , 2004 .

[8]  Andreas Kugi,et al.  Automatic Control of Mechatronic Systems , 2001 .

[9]  Robert Altmann,et al.  On the Port-Hamiltonian Structure of the Navier-Stokes Equations for Reactive Flows , 2016 .

[10]  Hantaek Bae Navier-Stokes equations , 1992 .

[11]  William Layton,et al.  Introduction to the Numerical Analysis of Incompressible Viscous Flows , 2008 .

[12]  Romeo Ortega,et al.  Putting energy back in control , 2001 .

[13]  Hans Zwart,et al.  Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces , 2012 .

[14]  Etienne Emmrich,et al.  Operator Differential-Algebraic Equations Arising in Fluid Dynamics , 2013, Comput. Methods Appl. Math..

[15]  R. Glowinski,et al.  Numerical methods for multibody systems , 1994 .

[16]  R. Carter Lie Groups , 1970, Nature.

[17]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[18]  Herbert Egger,et al.  Structure preserving approximation of dissipative evolution problems , 2018, Numerische Mathematik.

[19]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[20]  Lena Scholz,et al.  Condensed Forms for Linear Port-Hamiltonian Descriptor Systems , 2019, The Electronic Journal of Linear Algebra.

[21]  Rolf Rannacher,et al.  Finite Element Methods for the Incompressible Navier-Stokes Equations , 2000 .

[22]  Juan Luis Varona,et al.  Port-Hamiltonian systems: an introductory survey , 2006 .

[23]  Stephen L. Campbell,et al.  A general form for solvable linear time varying singular systems of differential equations , 1987 .

[24]  A. Quarteroni,et al.  On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .

[25]  Alfio Quarteroni,et al.  Integrated Heart—Coupling multiscale and multiphysics models for the simulation of the cardiac function , 2017 .

[26]  Arjan van der Schaft,et al.  Hamiltonian formulation of bond graphs , 2003 .

[27]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[28]  P. Kunkel A smooth version of Sylvester's law of inertia and its numerical realization , 2020 .

[29]  Hans-Görg Roos,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: A Survey Covering 2008–2012 , 2012 .

[30]  Werner Schiehlen,et al.  Advanced Multibody System Dynamics , 1899 .

[31]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[32]  Volker Mehrmann,et al.  Self-adjoint differential-algebraic equations , 2014, Math. Control. Signals Syst..

[33]  Linda R. Petzold,et al.  Differential-algebraic equations , 2008, Scholarpedia.

[34]  A. J. van der Schaft,et al.  Port-Hamiltonian Differential-Algebraic Systems , 2013 .

[35]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[36]  Alfio Quarteroni,et al.  Mathematical Modelling and Numerical Simulation of the Cardiovascular System , 2004 .

[37]  B. Leimkuhler,et al.  Symplectic integration of constrained Hamiltonian systems , 1994 .

[38]  Hans Zwart,et al.  Port-Hamiltonian descriptor systems , 2017, 1705.09081.

[39]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[40]  Alfio Quarteroni,et al.  The cardiovascular system: Mathematical modelling, numerical algorithms and clinical applications * , 2017, Acta Numerica.

[41]  Arjan van der Schaft,et al.  Port-Hamiltonian Systems Theory: An Introductory Overview , 2014, Found. Trends Syst. Control..

[42]  Martin Schmidt,et al.  Port-Hamiltonian Modeling of District Heating Networks , 2019, Progress in Differential-Algebraic Equations II.