Lobula-specific visual projection neurons are involved in perception of motion-defined second-order motion in Drosophila

SUMMARY A wide variety of animal species including humans and fruit flies see second-order motion although they lack coherent spatiotemporal correlations in luminance. Recent electrophysiological recordings, together with intensive psychophysical studies, are bringing to light the neural underpinnings of second-order motion perception in mammals. However, where and how the higher-order motion signals are processed in the fly brain is poorly understood. Using the rich genetic tools available in Drosophila and examining optomotor responses in fruit flies to several stimuli, we revealed that two lobula-specific visual projection neurons, specifically connecting the lobula and the central brain, are involved in the perception of motion-defined second-order motion, independent of whether the second-order feature is moving perpendicular or opposite to the local first-order motion. By contrast, blocking these neurons has no effect on first-order and flicker-defined second-order stimuli in terms of response delay. Our results suggest that visual neuropils deep in the optic lobe and the central brain, whose functional roles in motion processing were previously unclear, may be specifically required for motion-defined motion processing.

[1]  K. Götz Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster , 1987 .

[2]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[3]  K. Broadie,et al.  Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects , 1995, Neuron.

[4]  G. Sperling,et al.  The functional architecture of human visual motion perception , 1995, Vision Research.

[5]  A. Cowey,et al.  Impairment of the perception of second order motion but not first order motion in a patient with unilateral focal brain damage , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[6]  M. Heisenberg,et al.  Conditioned visual flight orientation in Drosophila: dependence on age, practice, and diet. , 1996, Learning & memory.

[7]  C. Baker Central neural mechanisms for detecting second-order motion , 1999, Current Opinion in Neurobiology.

[8]  Matthew C Smear,et al.  Perception of Fourier and non-Fourier motion by larval zebrafish , 2000, Nature Neuroscience.

[9]  J. B. Demb,et al.  Cellular Basis for the Response to Second-Order Motion Cues in Y Retinal Ganglion Cells , 2001, Neuron.

[10]  N. Strausfeld,et al.  Anatomical organization of retinotopic motion‐sensitive pathways in the optic lobes of flies , 2003, Microscopy research and technique.

[11]  Herwig Baier,et al.  Visuomotor Behaviors in Larval Zebrafish after GFP-Guided Laser Ablation of the Optic Tectum , 2003, The Journal of Neuroscience.

[12]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[13]  Nicholas J. Strausfeld,et al.  Structural organization of male-specific visual neurons in calliphorid optic lobes , 1991, Journal of Comparative Physiology A.

[14]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[15]  J. M. Zanker,et al.  Visual detection of paradoxical motion in flies , 1991, Journal of Comparative Physiology A.

[16]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[17]  Michael H Dickinson,et al.  Spatial organization of visuomotor reflexes in Drosophila , 2004, Journal of Experimental Biology.

[18]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster , 2004, Cell and Tissue Research.

[19]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 1979, Journal of comparative physiology.

[20]  Kei Ito,et al.  Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula‐specific pathways , 2006, The Journal of comparative neurology.

[21]  N. Strausfeld,et al.  Visual system of calliphorid flies: Motion‐ and orientation‐sensitive visual interneurons supplying dorsal optic glomeruli , 2007, The Journal of comparative neurology.

[22]  Dario L. Ringach,et al.  Flies see second-order motion , 2008, Current Biology.

[23]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[24]  Dario L. Ringach,et al.  Theta Motion Processing in Fruit Flies , 2010, Front. Behav. Neurosci..

[25]  A. Borst,et al.  Fly motion vision. , 2010, Annual review of neuroscience.

[26]  N. Issa,et al.  Subcortical Representation of Non-Fourier Image Features , 2010, The Journal of Neuroscience.

[27]  Ari Rosenberg,et al.  The Y Cell Visual Pathway Implements a Demodulating Nonlinearity , 2011, Neuron.

[28]  Kei Ito,et al.  Optic Glomeruli and Their Inputs in Drosophila Share an Organizational Ground Pattern with the Antennal Lobes , 2012, The Journal of Neuroscience.

[29]  A. Borst,et al.  Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila , 2012, Journal of Comparative Physiology.

[30]  Karin Nordström,et al.  Higher-order motion sensitivity in fly visual circuits , 2012, Proceedings of the National Academy of Sciences.

[31]  Mark A. Frye,et al.  Figure Tracking by Flies Is Supported by Parallel Visual Streams , 2012, Current Biology.