Electrospinning has developed as a unique and versatile process to fabricate ultrathin fibers in the form of nonwoven meshes or as oriented arrays from a variety of polymers. The very small dimension of these fibers can generate a high surface area, which makes them potential candidates for various biomedical and industrial applications. The objective of the present study was to develop nanofibers from polyphosphazenes, a class of inorganic-organic polymers known for high biocompatibility, high-temperature stability, and low-temperature flexibility. Specifically, we evaluated the feasibility of developing bead-free nonwoven nanofiber mesh from poly[bis(p-methylphenoxy)phosphazene] (PNmPh) by electrospinning. The effect of process parameters such as nature of solvent, concentration of the polymer solution, effect of needle diameter, and applied potential on the diameter and morphology (beaded or bead-free) of resulting nanofibers were investigated. It was found that solution of PNmPh in chloroform at a concentration range of 7% (wt/v) to 9% (wt/v) can be readily electrospun to form bead-free fibers at room temperature. The mean diameter of the fibers obtained under optimized spinning condition was found to be approximately 1.2 microm. The bead-free, cylindrical nanofibers formed under the optimized condition showed a slightly irregular surface topography with indentations of a few nanometer scale. Further, the electrospun nanofiber mats supported the adhesion of bovine coronary artery endothelial cells (BCAEC) as well as promoted the adhesion and proliferation of osteoblast like MC3T3-E1 cells.