Spatio-temporal control of femtosecond laser pulse filamentation in the atmosphere

Atmospheric turbulence influence on stochastic filamentation of the chirped femtosecond laser pulses in the kilometer-range propagation is analyzed. The problem of the chirped pulse parameters optimization is discussed. An effective semi-analytical method is suggested to investigate chirped pulse propagation and filamentation over kilometer range distances in the turbulent atmosphere.

[1]  Henesian,et al.  Indices governing optical self-focusing and self-induced changes in the state of polarization in N2, O2, H2, and Ar gases. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[2]  Olga G. Kosareva,et al.  Filamentation of femtosecond laser pulses in turbulent air , 2002 .

[3]  V. Kandidov,et al.  Properties of self-focusing of elliptic beams , 2004 .

[4]  O. Kosareva,et al.  Dynamic small-scale self-focusing of a femtosecond laser pulse , 2005 .

[5]  S. Chin,et al.  A method for spatial regularisation of a bunch of filaments in a femtosecond laser pulse , 2004 .

[6]  See Leang Chin,et al.  The critical laser intensity of self-guided light filaments in air , 2000 .

[7]  R Sauerbrey,et al.  Multiple filamentation of terawatt laser pulses in air. , 2004, Physical review letters.

[8]  I. S. Golubtsov,et al.  Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation) , 2003 .

[9]  Bernard Prade,et al.  Determination of the inertial contribution to the nonlinear refractive index of air, N 2 , and O 2 by use of unfocused high-intensity femtosecond laser pulses , 1997 .

[10]  Jin Yu,et al.  Long-distance remote laser-induced breakdown spectroscopy using filamentation in air , 2004 .

[11]  Olga G. Kosareva,et al.  Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmosphere , 1999 .

[12]  Jin Yu,et al.  Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes , 2004 .

[13]  B Hafizi,et al.  Propagation of intense short laser pulses in the atmosphere. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  F. Théberge,et al.  An efficient control of ultrashort laser filament location in air for the purpose of remote sensing , 2006 .

[15]  V. I. Bespalov,et al.  Filamentary Structure of Light Beams in Nonlinear Liquids , 1966 .

[16]  G. Roy,et al.  Understanding the advantage of remote femtosecond laser-induced breakdown spectroscopy of metallic targets , 2007 .

[17]  Miroslav Kolesik,et al.  OPTICALLY TURBULENT FEMTOSECOND LIGHT GUIDE IN AIR , 1999 .

[18]  Martin Richardson,et al.  Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy , 2006, SPIE Defense + Commercial Sensing.

[19]  Olga G. Kosareva,et al.  The propagation of powerful femtosecond laser pulses in optical media : physics, applications, and new challenges , 2005 .

[20]  Olga G. Kosareva,et al.  Competition of multiple filaments during the propagation of intense femtosecond laser pulses , 2004 .

[21]  Jin Yu,et al.  Kilometer-range nonlinear propagation of femtosecond laser pulses. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  R. Sauerbrey,et al.  Range of plasma filaments created in air by a multi-terawatt femtosecond laser , 2005 .

[23]  N. S. Saini,et al.  Dynamics of self-focusing and self-phase modulation of elliptic Gaussian laser beam in a Kerr-medium , 2000 .

[24]  L. Andrews Field guide to atmospheric optics , 2004 .

[25]  Jin Yu,et al.  Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation☆ , 2005 .