Single mode waveguide platform for spontaneous and surface-enhanced on-chip Raman spectroscopy

We review an on-chip approach for spontaneous Raman spectroscopy and surface-enhanced Raman spectroscopy based on evanescent excitation of the analyte as well as evanescent collection of the Raman signal using complementary metal oxide semiconductor (CMOS)-compatible single mode waveguides. The signal is either directly collected from the analyte molecules or via plasmonic nanoantennas integrated on top of the waveguides. Flexibility in the design of the geometry of the waveguide, and/or the geometry of the antennas, enables optimization of the collection efficiency. Furthermore, the sensor can be integrated with additional functionality (sources, detectors, spectrometers) on the same chip. In this paper, the basic theoretical concepts are introduced to identify the key design parameters, and some proof-of-concept experimental results are reviewed.

[1]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[2]  Tymon Barwicz,et al.  Microring-resonator-based add-drop filters in SiN: fabrication and analysis. , 2004, Optics express.

[3]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[4]  Robert L. Byer,et al.  Coherent anti-Stokes Raman spectroscopy , 1974 .

[5]  R. Soref Silicon Photonics: A Review of Recent Literature , 2010 .

[6]  J. D. Swalen,et al.  Raman Measurements on Thin Polymer Films and Organic Monolayers , 1980 .

[7]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[8]  Eric C. Le Ru,et al.  Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects , 2008 .

[9]  Roel Baets,et al.  Surface enhanced raman spectroscopy using a single mode nanophotonic-plasmonic platform , 2015, 1508.02189.

[10]  K. Nakamoto,et al.  Introductory Raman Spectroscopy , 1994 .

[11]  Derek A. Long,et al.  The Raman Effect , 2002 .

[12]  Roel Baets,et al.  Enhancement of Raman scattering efficiency by a metallic nano-antenna on top of a high index contrast waveguide , 2013, CLEO: 2013.

[13]  Sergio B. Mendes,et al.  Planar integrated optical waveguide spectroscopy , 2005 .

[14]  Meikun Fan,et al.  A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. , 2011, Analytica chimica acta.

[15]  S. Retterer,et al.  Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. , 2010, Nano letters.

[16]  P. Dumon,et al.  Planar Concave Grating Demultiplexer Fabricated on a Nanophotonic Silicon-on-Insulator Platform , 2007, Journal of Lightwave Technology.

[17]  Roel Baets,et al.  Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides. , 2015, Optics express.

[18]  Douglas A. Greenhalgh,et al.  Coherent Antistokes Raman Spectroscopy In Sooty Diffusion Flames , 1978, Optics & Photonics.

[19]  Gunther Roelkens,et al.  Silicon-integrated short-wavelength hybrid-cavity VCSEL. , 2015, Optics express.

[20]  A. Boudrioua Optical Waveguide Theory , 2010 .

[21]  Norbert Keil,et al.  Polymer embedded silicon nitride thermally tunable Bragg grating filters , 2013 .

[22]  Derek A. Long,et al.  The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules , 2001 .

[23]  F. Benabid,et al.  Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber , 2002, Science.

[24]  R. Baets,et al.  Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide. , 2015, Optics express.

[25]  T. Barwicz,et al.  Fabrication and analysis of add-drop filters based on microring resonators in SiN , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.

[26]  Jürgen Popp,et al.  Raman to the limit: tip‐enhanced Raman spectroscopic investigations of a single tobacco mosaic virus , 2009 .

[27]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[28]  J. Greve,et al.  WAVEGUIDE RAMAN SPECTROSCOPY OF THIN POLYMER LAYERS AND MONOLAYERS OF BIOMOLECULES USING HIGH REFRACTIVE INDEX WAVEGUIDES , 1996 .

[29]  Roel Baets,et al.  The role of index contrast in the efficiency of absoprtion and emission of a luminescent particle near a slab waveguide , 2012 .

[30]  Wim Bogaerts,et al.  Compact Silicon Nitride Arrayed Waveguide Gratings for Very Near-Infrared Wavelengths , 2015, IEEE Photonics Technology Letters.

[31]  Guo-Qiang Lo,et al.  Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity. , 2012, Optics express.

[32]  Yi Zhang,et al.  Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering , 2007 .

[33]  A. Hawkins,et al.  On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides , 2007 .

[34]  R. Baets,et al.  Nanophotonic lab-on-a-chip Raman sensors: A sensitivity comparison with confocal Raman microscope , 2015, 2015 International Conference on BioPhotonics (BioPhotonics).

[35]  J. Chan,et al.  A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles. , 2015, Optics express.

[36]  Siva Yegnanarayanan,et al.  Hybrid Integrated Plasmonic-photonic Waveguides for On-chip Localized Surface Plasmon Resonance (lspr) Sensing and Spectroscopy References and Links , 2022 .

[37]  R. Baets,et al.  Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532–900 nm Wavelength Window Fabricated Within a CMOS Pilot Line , 2013, IEEE Photonics Journal.

[38]  Vincent Mazet,et al.  Background removal from spectra by designing and minimising a non-quadratic cost function , 2005 .

[39]  W. Lukosz,et al.  Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power , 1977 .

[40]  Florian Merget,et al.  Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths. , 2013, Optics express.

[41]  Jürgen Popp,et al.  Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps , 2013, Analytical and Bioanalytical Chemistry.

[42]  Gunther Roelkens,et al.  Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide. , 2015, Optics letters.

[43]  George Turrell,et al.  Raman microscopy : developments and applications , 1996 .

[44]  Ali Adibi,et al.  Planar photonic crystal microspectrometers in silicon-nitride for the visible range. , 2009, Optics Express.

[45]  Wim Bogaerts,et al.  Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited] , 2015 .

[46]  Marc Sorel,et al.  Integrated microspectrometer for fluorescence based analysis in a microfluidic format. , 2012, Lab on a chip.

[47]  J. Laserna,et al.  Modern techniques in Raman spectroscopy , 1996 .

[48]  Wenqi Zhu,et al.  Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity. , 2013, Nano letters.

[49]  Roel Baets,et al.  Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides. , 2014, Optics letters.