Retrotransposon-gene associations are widespread among D. melanogaster populations.

We have surveyed 18 natural populations of Drosophila melanogaster for the presence of 23 retrotransposon-gene-association alleles (i.e., the presence of an LTR retrotransposon sequence in or within 1,000 bp of a gene) recently identified in the sequenced D. melanogaster genome. The identified associations were detected only in the D. melanogaster populations. The majority (61%) of the identified retrotransposon-gene associations were present only in the sequenced strain in which they were first identified. Thirty percent of the associations were detected in at least one of the natural populations, and 9% of the associations were detected in all of the D. melanogaster populations surveyed. Sequence analysis of an association allele present in all populations indicates that selection is a significant factor in the spread and/or maintenance of at least some of retroelement-gene associations in D. melanogaster.

[1]  G. Glazko,et al.  Origin of a substantial fraction of human regulatory sequences from transposable elements. , 2003, Trends in genetics : TIG.

[2]  R. Flavell,et al.  Repetitive DNA and chromosome evolution in plants. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[3]  R. Britten,et al.  DNA sequence insertion and evolutionary variation in gene regulation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[5]  J. Bennetzen,et al.  Nested Retrotransposons in the Intergenic Regions of the Maize Genome , 1996, Science.

[6]  A. E. Hirsh,et al.  Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila. , 2003, Molecular biology and evolution.

[7]  J. Shapiro DNA insertion elements and the evolution of chromosome primary structure , 1977 .

[8]  B. Mcclintock,et al.  Chromosome organization and genic expression. , 1951, Cold Spring Harbor symposia on quantitative biology.

[9]  Phillip SanMiguel,et al.  The paleontology of intergene retrotransposons of maize , 1998, Nature Genetics.

[10]  G. Gloor,et al.  Type I repressors of P element mobility. , 1993, Genetics.

[11]  John F. McDonald,et al.  Comparative genomics and evolutionary dynamics of Saccharomyces cerevisiae Ty elements , 2004, Genetica.

[12]  J. Brosius,et al.  RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. , 1999, Gene.

[13]  D. Hickey Selfish DNA: a sexually-transmitted nuclear parasite. , 1982, Genetics.

[14]  A. Nekrutenko,et al.  Transposable elements are found in a large number of human protein-coding genes. , 2001, Trends in genetics : TIG.

[15]  C. Ball,et al.  Genetic and physical maps of Saccharomyces cerevisiae. , 1997, Nature.

[16]  Michael Cherry,et al.  South African museums' status ‘at risk’ , 1997, Nature.

[17]  Pawel Michalak,et al.  Modification of heat-shock gene expression in Drosophila melanogaster populations via transposable elements. , 2003, Molecular biology and evolution.

[18]  C. Laurie,et al.  Patterns of naturally occurring restriction map variation, dopa decarboxylase activity variation and linkage disequilibrium in the Ddc gene region of Drosophila melanogaster. , 1992, Genetics.

[19]  Dan Graur,et al.  Alu-containing exons are alternatively spliced. , 2002, Genome research.

[20]  B. Charlesworth The maintenance of transposable elements in natural populations. , 1988, Basic life sciences.

[21]  F. Ayala,et al.  Patterns of DNA sequence polymorphism at Sod vicinities in Drosophila melanogaster: Unraveling the footprint of a recent selective sweep , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. Landry,et al.  Long Terminal Repeats Are Used as Alternative Promoters for the Endothelin B Receptor and Apolipoprotein C-I Genes in Humans* , 2001, The Journal of Biological Chemistry.

[23]  N. Bowen,et al.  Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside. , 2001, Genome research.

[24]  B. Charlesworth,et al.  The population genetics of Drosophila transposable elements. , 1989, Annual review of genetics.

[25]  F. Ayala,et al.  GENETIC DIFFERENTIATION DURING THE SPECIATION PROCESS IN DROSOPHILA , 1974, Evolution; international journal of organic evolution.

[26]  S. Dwight,et al.  Genetic and physical maps of Saccharomyces cerevisiae. , 1997, Methods in enzymology.

[27]  B. Charlesworth,et al.  Inferences on the evolutionary history of the S-element family of Drosophila melanogaster. , 2003, Molecular biology and evolution.

[28]  Gerald M Rubin,et al.  Heterochromatic sequences in a Drosophila whole-genome shotgun assembly , 2002, Genome Biology.

[29]  J. Stoye,et al.  Retrotransposons, Endogenous Retroviruses, and the Evolution of Retroelements , 1997 .

[30]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[31]  E. Ganko,et al.  Evolutionary history of Cer elements and their impact on the C. elegans genome. , 2001, Genome research.

[32]  I. K. Jordan,et al.  Tempo and mode of Ty element evolution in Saccharomyces cerevisiae. , 1999, Genetics.

[33]  J. Landry,et al.  Repetitive elements in the 5' untranslated region of a human zinc-finger gene modulate transcription and translation efficiency. , 2001, Genomics.

[34]  J. McDonald,et al.  Evolution and consequences of transposable elements. , 1993, Current opinion in genetics & development.

[35]  Julio Rozas,et al.  DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis , 1999, Bioinform..

[36]  Vikram Bhattacharjee,et al.  Evidence for the contribution of LTR retrotransposons to C. elegans gene evolution. , 2003, Molecular biology and evolution.

[37]  M. G. Kidwell,et al.  Transposable elements and the evolution of genome size in eukaryotes , 2002, Genetica.

[38]  F. Ayala,et al.  DNA variation at the Sod locus of Drosophila melanogaster: an unfolding story of natural selection. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Ashburner,et al.  The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective , 2002, Genome Biology.

[40]  Dmitri A. Petrov,et al.  DNA loss and evolution of genome size in Drosophila , 2002, Genetica.

[41]  J. McDonald Macroevolution and Retroviral ElementsInsertion of viral-like DNA segments may bring about rapid and dramatic changes in gene regulation and development , 1990 .

[42]  E. Myers,et al.  Finishing a whole-genome shotgun: Release 3 of the Drosophila melanogaster euchromatic genome sequence , 2002, Genome Biology.