An effective GRASP and tabu search for the 0-1 quadratic knapsack problem

As a generalization of the classical 0-1 knapsack problem, the 0-1 Quadratic Knapsack Problem (QKP) that maximizes a quadratic objective function subject to a linear capacity constraint is NP-hard in strong sense. In this paper, we propose a memory based Greedy Randomized Adaptive Search Procedures (GRASP) and a tabu search algorithm to find near optimal solution for the QKP. Computational experiments on benchmarks and on randomly generated instances demonstrate the effectiveness and the efficiency of the proposed algorithms, which outperforms the current state-of-the-art heuristic Mini-Swarm in computational time and in the probability to achieve optimal solutions. Numerical results on large-sized instances with up to 2000 binary variables have also been reported.

[1]  Bryant A. Julstrom Greedy, genetic, and greedy genetic algorithms for the quadratic knapsack problem , 2005, GECCO '05.

[2]  Celso C. Ribeiro,et al.  GRASP with Path-Relinking: Recent Advances and Applications , 2005 .

[3]  Reiner Horst,et al.  A new simplicial cover technique in constrained global optimization , 1992, J. Glob. Optim..

[4]  Mauricio G. C. Resende,et al.  Grasp: An Annotated Bibliography , 2002 .

[5]  Ulrich Faigle,et al.  A cutting-plane approach to the edge-weighted maximal clique problem , 1993 .

[6]  Gerhard J. Woeginger,et al.  The quadratic 0-1 knapsack problem with series-parallel support , 2002, Oper. Res. Lett..

[7]  David Pisinger,et al.  The quadratic knapsack problem - a survey , 2007, Discret. Appl. Math..

[8]  David Pisinger,et al.  Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction , 2007, INFORMS J. Comput..

[9]  Celso C. Ribeiro,et al.  Reactive GRASP: An Application to a Matrix Decomposition Problem in TDMA Traffic Assignment , 2000, INFORMS J. Comput..

[10]  Zhou Xu,et al.  A strongly polynomial FPTAS for the symmetric quadratic knapsack problem , 2012, Eur. J. Oper. Res..

[11]  Anass Nagih,et al.  Reoptimization in Lagrangian methods for the 0-1 quadratic knapsack problem , 2012, Comput. Oper. Res..

[12]  P. Hammer,et al.  Quadratic knapsack problems , 1980 .

[13]  David J. Rader,et al.  Efficient Methods For Solving Quadratic 0–1 Knapsack Problems , 1997 .

[14]  Fred Glover,et al.  Tabu Search and Adaptive Memory Programming — Advances, Applications and Challenges , 1997 .

[15]  Hans Kellerer,et al.  Fully Polynomial Approximation Schemes for a Symmetric Quadratic Knapsack Problem and its Scheduling Applications , 2010, Algorithmica.

[16]  Jiming Liu,et al.  A Mini-Swarm for the Quadratic Knapsack Problem , 2007, 2007 IEEE Swarm Intelligence Symposium.

[17]  Zhen Yang Etude de problèmes de localisation de sites dans la conception des réseaux logistiques , 2009 .

[18]  J. Rhys A Selection Problem of Shared Fixed Costs and Network Flows , 1970 .

[19]  Alain Billionnet,et al.  Linear programming for the 0–1 quadratic knapsack problem , 1996 .

[20]  Adam N. Letchford,et al.  A Dynamic Programming Heuristic for the Quadratic Knapsack Problem , 2014, INFORMS J. Comput..

[21]  Sungsoo Park,et al.  An extended formulation approach to the edge-weighted maximal clique problem , 1996 .

[22]  George L. Nemhauser,et al.  Min-cut clustering , 1993, Math. Program..

[23]  R. Weismantel,et al.  A Semidefinite Programming Approach to the Quadratic Knapsack Problem , 2000, J. Comb. Optim..

[24]  Celso C. Ribeiro,et al.  Greedy Randomized Adaptive Search Procedures , 2003, Handbook of Metaheuristics.

[25]  Paolo Toth,et al.  Exact Solution of the Quadratic Knapsack Problem , 1999, INFORMS J. Comput..

[26]  Christoph Witzgall Mathematical methods of site selection for Electronic Message Systems (EMS) , 1975 .

[27]  Philippe Michelon,et al.  Lagrangean methods for the 0-1 Quadratic Knapsack Problem , 1996 .

[28]  Alain Billionnet,et al.  An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem , 2004, Eur. J. Oper. Res..

[29]  Fred Glover,et al.  Improved Constructive Multistart Strategies for the Quadratic Assignment Problem Using Adaptive Memory , 1999, INFORMS J. Comput..