Fast discrete Helmholtz-Hodge decompositions in bounded domains

We present new fast {\em discrete Helmholtz-Hodge decomposition (DHHD)} methods to efficiently compute at the order $\cO(\eps)$ the divergen\-ce-free (solenoidal) or curl-free (irrotational) components and their associated potentials of a given $\mathbf{L}^2(\Omega)$ vector field in a bounded domain. The solution algorithms solve suitable penalized boundary-value elliptic problems involving either the $\Grad(\Div)$ operator in the {\em vector penalty-projection (VPP)} or the $\Rot(\Rot)$ operator in the {\em rotational penalty-projection (RPP)} with {\em adapted right-hand sides} of the same form. Therefore, they are extremely well-conditioned, fast and cheap avoiding to solve the usual Poisson problems for the scalar or vector potentials. Indeed, each (VPP) or (RPP) problem only requires two conjugate-gradient iterations whatever the mesh size, when the penalty parameter $\varepsilon$ is sufficiently small. We state optimal error estimates vanishing as $\mathcal{O}(\varepsilon)$ with a penalty parameter $\varepsilon$ as small as desired up to machine precision, e.g. $\varepsilon=10^{-14}$. Some numerical results confirm the efficiency of the proposed (DHHD) methods, very useful to solve problems in electromagnetism or fluid dynamics.

[1]  F. Denaro,et al.  On the application of the Helmholtz–Hodge decomposition in projection methods for incompressible flows with general boundary conditions , 2003 .

[2]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[3]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[4]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[5]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[6]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[7]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[8]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[9]  Santiago V. Lombeyda,et al.  Discrete multiscale vector field decomposition , 2003, ACM Trans. Graph..

[10]  Jean Leray,et al.  Essai sur les mouvements plans d'un fluide visqueux que limitent des parois. , 1934 .

[11]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[12]  V. Girault,et al.  Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension , 1994 .

[13]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[14]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[15]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[16]  Philippe Angot,et al.  A new fast method to compute saddle-points in constrained optimization and applications , 2012, Appl. Math. Lett..

[17]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[18]  Raphaèle Herbin,et al.  Finite Volumes for Complex Applications VI Problems & Perspectives , 2011 .

[19]  R. Temam,et al.  Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation , 1978 .

[20]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 2014 .

[21]  Philippe Angot,et al.  Vector penalty-projection methods for the solution of unsteady incompressible flows , 2008 .

[22]  R. Temam Navier-Stokes Equations , 1977 .

[23]  Khodor Khadra,et al.  Fictitious domain approach for numerical modelling of Navier–Stokes equations , 2000 .

[24]  P. Fabrie,et al.  Convergence results for the vector penalty-projection and two-step artificial compressibility methods , 2012 .

[25]  J. Blair Perot,et al.  Discrete Conservation Properties of Unstructured Mesh Schemes , 2011 .

[26]  Thomas Rylander,et al.  Computational Electromagnetics , 2005, Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar.

[27]  Philippe Angot,et al.  A Spectacular Vector Penalty-Projection Method for Darcy and Navier-Stokes Problems , 2011 .

[28]  Philippe Angot,et al.  A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems , 2012, Appl. Math. Lett..