An UKF‐based nonlinear system identification method using interpolation models and backward integration

In this paper, a novel identification method for nonlinear systems is proposed. This method utilizes linear interpolation models to describe the nonlinear forces of the physical models, and the unscented Kalman filter (UKF) method is adopted for the task of nonlinear identification. With the help of a linear interpolation algorithm, the proposed method requires little prior knowledge of the form of the nonlinear stiffness. Therefore, this method takes advantage of both the independence of the linear interpolation points and the inherent mathematical properties of the UKF. The UKF method is also modified to better fit the needs of parameter identification. To further emphasize parameter identification, backward integration and observations of the previous states are used. Two numerical simulations of the nonlinear elastic stiffness and Bouc–Wen hysteresis are conducted to show the flexibility and efficiency of this method. In these 2 examples, the observation signals are generated by analytic models, and the identifications are conducted with a linear interpolation model.

[1]  Masahiro Kurata,et al.  Residual structural capacity evaluation of steel moment‐resisting frames with dynamic‐strain‐based model updating method , 2017 .

[2]  Andrew W. Smyth,et al.  Online Bayesian model assessment using nonlinear filters , 2017 .

[3]  Johan Schoukens,et al.  A nonlinear state-space approach to hysteresis identification , 2016, ArXiv.

[4]  Seyyed Mohammad Ali Hashemi,et al.  Localized genetically optimized wavelet neural network for semi-active control of buildings subjected to earthquake , 2016 .

[5]  Onur Avci,et al.  Iterated square root unscented Kalman filter for nonlinear states and parameters estimation: three DOF damped system , 2015 .

[6]  Saeed Tavakoli,et al.  Delayed adaptive output feedback sliding mode control for offshore platforms subject to nonlinear wave-induced force , 2015 .

[7]  Joel P. Conte,et al.  Material Parameter Identification in Distributed Plasticity FE Models of Frame-Type Structures Using Nonlinear Stochastic Filtering , 2015 .

[8]  Mahendra P. Singh,et al.  An adaptive unscented Kalman filter for tracking sudden stiffness changes , 2014 .

[9]  Ondrej Straka,et al.  Unscented Kalman filter with advanced adaptation of scaling parameter , 2014, Autom..

[10]  H. Ahmadian,et al.  Identification of Iwan distribution density function in frictional contacts , 2014 .

[11]  A. Abdolahi Rad,et al.  Wavelet PSO‐Based LQR Algorithm for Optimal Structural Control Using Active Tuned Mass Dampers , 2013, Comput. Aided Civ. Infrastructure Eng..

[12]  Sean R. Anderson,et al.  Structure detection and parameter estimation for NARX models in a unified EM framework , 2012, Autom..

[13]  Jiuchao Feng,et al.  Real-time nonlinear structural system identification via iterated unscented Kalman filter , 2012 .

[14]  Cheng-Wu Chen,et al.  Adaptive Fuzzy Sliding Mode Control for Seismically excited Bridges with lead Rubber Bearing Isolation , 2009, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[15]  Mohammed Ismail,et al.  The Hysteresis Bouc-Wen Model, a Survey , 2009 .

[16]  Eleni Chatzi,et al.  The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non‐collocated heterogeneous sensing , 2009 .

[17]  Liang Deng,et al.  Modeling of rate-dependent hysteresis in piezoelectric actuators , 2008, 2008 IEEE International Conference on Control Applications.

[18]  Andrew W. Smyth,et al.  Application of the unscented Kalman filter for real‐time nonlinear structural system identification , 2007 .

[19]  F. Ikhouane,et al.  Systems with Hysteresis: Analysis, Identification and Control Using the Bouc-Wen Model , 2007 .

[20]  Fayal Ikhouane,et al.  Systems with Hysteresis , 2007 .

[21]  J. Gove,et al.  Application of a dual unscented Kalman filter for simultaneous state and parameter estimation in problems of surface‐atmosphere exchange , 2006 .

[22]  Dennis S. Bernstein,et al.  Semilinear Duhem model for rate-independent and rate-dependent hysteresis , 2005, IEEE Transactions on Automatic Control.

[23]  Sheng Chen,et al.  Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design , 2003, IEEE Trans. Autom. Control..

[24]  Cameron N. Riviere,et al.  Modeling Rate-dependent Hysteresis in Piezoelectric Actuator , 2003 .

[25]  Gaëtan Kerschen,et al.  THEORETICAL AND EXPERIMENTAL IDENTIFICATION OF A NON-LINEAR BEAM , 2001 .

[26]  Andrew W. Smyth,et al.  On-Line Parametric Identification of MDOF Nonlinear Hysteretic Systems , 1999 .

[27]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[28]  S. Billings,et al.  Orthogonal parameter estimation algorithm for non-linear stochastic systems , 1988 .

[29]  I. Mayergoyz,et al.  Generalized Preisach model of hysteresis , 1988 .

[30]  P. Dahl Solid Friction Damping of Mechanical Vibrations , 1976 .

[31]  Wilfred D. Iwan,et al.  On a Class of Models for the Yielding Behavior of Continuous and Composite Systems , 1967 .