Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines.

Pumping iron: Double-threaded rotaxanes can be linked to coordination units and polymerized in the presence of iron or zinc ions. pH modulation triggers cooperative contractions (or extensions) of the individual rotaxanes, thus resulting in an amplified motion of the muscle-like supramolecular chains with changes of their contour lengths of several micrometers (see picture).

[1]  Peter Schurtenberger,et al.  Scattering Functions of Semiflexible Polymers with and without Excluded Volume Effects , 1996 .

[2]  Francesco Zerbetto,et al.  Unidirectional rotation in a mechanically interlocked molecular rotor , 2003, Nature.

[3]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[4]  Stephen Mann Das Leben als ein nanoskaliges Phänomen , 2008 .

[5]  J. F. Stoddart,et al.  Mechanically bonded macromolecules. , 2010, Chemical Society reviews.

[6]  David A Leigh,et al.  A synthetic small molecule that can walk down a track. , 2010, Nature chemistry.

[7]  Takuzo Aida,et al.  Light-driven open-close motion of chiral molecular scissors. , 2003, Journal of the American Chemical Society.

[8]  Euan R. Kay,et al.  Synthetische molekulare Motoren und mechanische Maschinen , 2007 .

[9]  J. F. Stoddart,et al.  Acid-base actuation of [c2]daisy chains. , 2009, Journal of the American Chemical Society.

[10]  Richard A. Silva,et al.  Unidirectional rotary motion in a molecular system , 1999, Nature.

[11]  F. Boué,et al.  Suppression of aggregation in natural-semiflexible/flexible polyanion mixtures, and direct check of the OSF model using SANS , 2008, 0904.0856.

[12]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[13]  Frédéric Coutrot,et al.  A new pH-switchable dimannosyl[c2]daisy chain molecular machine. , 2008, Organic letters.

[14]  F. Boué,et al.  Persistence length for a model semirigid polyelectrolyte as seen by small angle neutron scattering: a relevant variation of the lower bound with ionic strength , 2003, The European physical journal. E, Soft matter.

[15]  W. Burchard,et al.  The statistics of stiff chain molecules I. The particle scattering factor , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  J. Jiménez-Barbero,et al.  Tightening or loosening a pH-sensitive double-lasso molecular machine readily synthesized from an ends-activated [c2]daisy chain , 2012 .

[17]  Stephen Mann,et al.  Life as a nanoscale phenomenon. , 2008, Angewandte Chemie.

[18]  B. K. Juluri,et al.  A mechanical actuator driven electrochemically by artificial molecular muscles. , 2009, ACS nano.

[19]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[20]  V. Bloomfield,et al.  Light scattering from wormlike chains with excluded volume effects , 1968, Biopolymers.

[21]  Jean-Marie Lehn,et al.  Toward Self-Organization and Complex Matter , 2002, Science.

[22]  R. Grubbs,et al.  Switching and extension of a [c2]daisy-chain dimer polymer. , 2009, Journal of the American Chemical Society.

[23]  F. Coutrot,et al.  A new glycorotaxane molecular machine based on an anilinium and a triazolium station. , 2008, Chemistry.

[24]  Chuan-Feng Chen,et al.  A new [3]rotaxane molecular machine based on a dibenzylammonium ion and a triazolium station. , 2010, Organic letters.

[25]  U. Schubert,et al.  High molecular weight supramolecular polymers containing both terpyridine metal complexes and ureidopyrimidinone quadruple hydrogen-bonding units in the main chain. , 2005, Journal of the American Chemical Society.

[26]  F. Coutrot,et al.  Very contracted to extended co-conformations with or without oscillations in two- and three-station [c2]daisy chains. , 2010, The Journal of organic chemistry.

[27]  J. F. Stoddart,et al.  On the thermodynamic and kinetic investigations of a [c2]daisy chain polymer , 2010 .

[28]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[29]  T. Aida,et al.  Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. , 2005, Chemical reviews.

[30]  Ben L. Feringa,et al.  Nanotechnology: In control of molecular motion , 2000, Nature.

[31]  Chi-Ming Che,et al.  Self‐Assembled Electroluminescent Polymers Derived from Terpyridine‐Based Moieties , 2003 .

[32]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.