Electronic states of the quasilinear molecule propargylene (HCCCH) from negative ion photoelectron spectroscopy.

We use gas-phase negative ion photoelectron spectroscopy to study the quasilinear carbene propargylene, HCCCH, and its isotopologue DCCCD. Photodetachment from HCCCH– affords the X̃(3B) ground state of HCCCH and its ã(1A), b̃ (1B), d̃(1A2), and B̃(3A2) excited states. Extended, negatively anharmonic vibrational progressions in the X̃(3B) ground state and the open-shell singlet b̃ (1B) state arise from the change in geometry between the anion and the neutral states and complicate the assignment of the origin peak. The geometry change arising from electron photodetachment results in excitation of the ν4 symmetric CCH bending mode, with a measured fundamental frequency of 363 ± 57 cm(–1) in the X̃(3B) state. Our calculated harmonic frequency for this mode is 359 cm(–1). The Franck–Condon envelope of this progression cannot be reproduced within the harmonic approximation. The spectra of the ã(1A), d̃(1A2), and B̃(3A2) states are each characterized by a short vibrational progression and a prominent origin peak, establishing that the geometries of the anion and these neutral states are similar. Through comparison of the HCCCH– and DCCCD– photoelectron spectra, we measure the electron affinity of HCCCH to be 1.156 ± (0.095)(0.010) eV, with a singlet–triplet splitting between the X̃(3B) and the ã(1A) states of ΔEST = 0.500 ± (0.01)(0.10) eV (11.5 ± (0.2)(2.3) kcal/mol). Experimental term energies of the higher excited states are T0 [b̃(1B)] = 0.94 ± (0.20)(0.22) eV, T0 [d̃(1A2)] = 3.30 ± (0.02)(0.10) eV, T0 [B̃(3A2)] = 3.58 ± (0.02)(0.10) eV. The photoelectron angular distributions show significant π character in all the frontier molecular orbitals, with additional σ character in orbitals that create the X̃(3B) and b̃(1B) states upon electron detachment. These results are consistent with a quasilinear, nonplanar, doubly allylic structure of X̃(3B) HCCCH with both diradical and carbene character.

[1]  J. Stanton,et al.  The ν 3fundamental in NO 3has been seen near 1060 cm -1, albeit some time ago , 2012 .

[2]  M. Gerin,et al.  THE ABUNDANCE OF C3H2 AND OTHER SMALL HYDROCARBONS IN THE DIFFUSE INTERSTELLAR MEDIUM , 2012, 1206.0342.

[3]  C. Alcaraz,et al.  The photoionisation of propargylene and diazopropyne. , 2011, Physical chemistry chemical physics : PCCP.

[4]  B. McCall,et al.  Disclosing Identities in Diffuse Interstellar Bands , 2011, Science.

[5]  R. Kaiser,et al.  A crossed molecular beam study on the reaction of methylidyne radicals [CH(X(2)Π)] with acetylene [C(2)H(2)(X(1)Σ(g)(+))]-competing C(3)H(2) + H and C(3)H + H(2) channels. , 2011, Physical chemistry chemical physics : PCCP.

[6]  R. Raghunandan,et al.  IDENTIFICATION OF H2CCC AS A DIFFUSE INTERSTELLAR BAND CARRIER , 2010, 1011.0401.

[7]  Michael K. Bane,et al.  High-resolution Fourier-transform infrared spectroscopy of the v6 and Coriolis perturbation allowed v10 modes of ketenimine. , 2011 .

[8]  Laurent Nahon,et al.  Synchrotron vacuum ultraviolet radiation studies of the D-1 Pi(u) state of H-2 (Correction of vol 133, 144317, 2010) , 2011 .

[9]  R. McMahon,et al.  Structure of triplet propynylidene (HCCCH) as probed by IR, UV/vis, and EPR spectroscopy of isotopomers. , 2009, Journal of the American Chemical Society.

[10]  S. Leone,et al.  Cyclic versus linear isomers produced by reaction of the methylidyne radical (CH) with small unsaturated hydrocarbons. , 2009, Journal of the American Chemical Society.

[11]  J. Aguilera-Iparraguirre,et al.  Accurate ab initio computation of thermochemical data for C3Hx (x=0,…,4) species , 2008 .

[12]  M. Perić,et al.  Renner–Teller effect in five-atomic molecules: Ab initio investigation of the spectrum of C5- , 2008 .

[13]  E. Hansen,et al.  Search for solutions to the reactivity and selectivity problems in enyne metathesis. , 2006, Accounts of chemical research.

[14]  J. Maier,et al.  Gas phase electronic spectrum of propadienylidene C3H2 , 2006 .

[15]  P. R. Westmoreland,et al.  Synchrotron photoionization measurements of combustion intermediates: photoionization efficiency and identification of C3H2 isomers. , 2005, Physical chemistry chemical physics : PCCP.

[16]  J. Maier,et al.  Rotationally resolved electronic spectrum of propadienylidene , 2005 .

[17]  I. Guzei,et al.  Structural isomers of aryl-substituted eta(3)-propargyl complexes: eta(2)-1-Metalla(methylene)cyclopropene and eta(3)-benzyl complexes. , 2002, Journal of the American Chemical Society.

[18]  W. C. Lineberger,et al.  Photoelectron spectroscopy of HCCN- and HCNC- reveals the quasilinear triplet carbenes, HCCN and HCNC , 2002 .

[19]  P. Thaddeus,et al.  Carbon-13 Isotopic Species of H2C3, H2C4, and H2C5: High-Resolution Rotational Spectra , 2002 .

[20]  R. Kaiser,et al.  Product Branching Ratios of the C(3P) + C2H3(2A‘) and CH(2Π) + C2H2(1Σg+) Reactions and Photodissociation of H2CC⋮CH(2B1) at 193 and 242 nm: an ab Initio/RRKM Study , 2001 .

[21]  F. Güthe,et al.  Feshbach states of the propadienylidene anion H2CCC , 2001 .

[22]  R. McMahon,et al.  Electronic Spectrum of Propadienylidene (H2C=C=C:) and its Relevance to the Diffuse Interstellar Bands , 2000 .

[23]  D. Powell,et al.  Dimerization of Rhenium Alkynyl Carbene Complexes by a Process Involving Two [1,1.5] Rhenium Shifts and Coupling of the Remote Alkynyl Carbons , 2000 .

[24]  P. Cox,et al.  Detection of linear C 3 H 2 in absorption toward continuum sources , 1999 .

[25]  J. Gauss,et al.  The equilibrium structure of propadienylidene , 1999 .

[26]  J. Peeters,et al.  Detailed Microvariational RRKM Master Equation Analysis of the Product Distribution of the C2H2 + CH(X2Π) Reaction over Extended Temperature and Pressure Ranges , 1999 .

[27]  R. Bise,et al.  The singlet–triplet splittings of NCN , 1999 .

[28]  G. Schatz,et al.  Ab Initio and RRKM Studies of the Reactions of C, CH, and 1CH2 with Acetylene , 1998 .

[29]  P. R. Westmoreland,et al.  Measured Flame Structure and Kinetics in a Fuel-Rich Ethylene Flame 1 1 This report was prepared as , 1998 .

[30]  S. Ikuta An ab initio molecular orbital study on structures and energetics of a C3H2− anion , 1997 .

[31]  David H. Parker,et al.  Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen , 1997 .

[32]  R. McMahon,et al.  Structures, Automerizations, and Isomerizations of C3H2 Isomers , 1997 .

[33]  R. McMahon,et al.  Electronic Spectrum of Propadienylidene (H2CCC , 1997 .

[34]  James A. Miller,et al.  The effect of allene addition on the structure of a rich C2H2/O2/Ar flame☆ , 1996 .

[35]  K. Devriendt,et al.  Identification of the Sequence CH(2Π) + C2H2 → C3H2 + H (and C3H + H2) Followed by C3H2 + O → C2H + HCO (or H + CO) as C2H Source in C2H2/O/H Atomic Flames , 1996 .

[36]  S. Walch Characterization of the minimum energy paths for the reactions of CH(X 2Π) and 1CH2 with C2H2 , 1995 .

[37]  R. McMahon,et al.  AUTOMERIZATIONS AND ISOMERIZATIONS IN PROPYNYLIDENE (HCCCH), PROPADIENYLIDENE (H2CCC), AND CYCLOPROPENYLIDENE (C-C3H2) , 1995 .

[38]  R. McMahon,et al.  Structure of Triplet Propynylidene , 1995 .

[39]  W. C. Lineberger,et al.  Experimental Studies of Allene, Methylacetylene, and the Propargyl Radical: Bond Dissociation Energies, Gas-Phase Acidities, and Ion-Molecule Chemistry , 1995 .

[40]  D. Austin,et al.  Rearrangement of alkynyl and vinyl carbenoids via the rhodium(II)-catalyzed cyclization reaction of .alpha.-diazo ketones , 1993 .

[41]  Structure of propadienylidene, H2CCC , 1993 .

[42]  James A. Miller,et al.  Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels , 1992 .

[43]  H. Clauberg,et al.  Mass and photoelectron spectroscopy of C3H2. .DELTA.Hf of singlet carbenes deviate from additivity by their singlet-triplet gaps , 1992 .

[44]  S. Yamamoto,et al.  Microwave spectra and electric dipole moments for low-J levels of interstellar radicals : SO, C2S, C3S, c-HC3, CH2CC, and c-C3H2 , 1992 .

[45]  Patrick Thaddeus,et al.  Astronomical detection of H2CCC , 1991 .

[46]  Patrick Thaddeus,et al.  Laboratory detection of propadienylidene, H2CCC , 1990 .

[47]  W. C. Lineberger,et al.  A study of the singlet and triplet states of vinylidene by photoelectron spectroscopy of H2C=C−, D2C=C−, and HDC=C−. Vinylidene–acetylene isomerization , 1989 .

[48]  L. J. Schaad,et al.  Propargylene: A C3H2 isomer with unusual bonding , 1989 .

[49]  Larson,et al.  Angular distributions in photodetachment from O- , 1989, Physical review. A, General physics.

[50]  P. Friberg,et al.  A survey of cyclopropenylidene (C3H2) in galactic sources. , 1989, The Astronomical journal.

[51]  H. Kanata,et al.  Microwave spectroscopic determination of the dipole moment of cyclopropenylidene, C3H2 , 1987 .

[52]  L. J. Schaad,et al.  Vinylidene carbene: a new C3H2 species , 1987 .

[53]  D. Chandler,et al.  Two‐dimensional imaging of state‐selected photodissociation products detected by multiphoton ionization , 1987 .

[54]  M. Bogey,et al.  Molecular structure of cyclopropenylidene, HCCCH from the millimeter wave spectra of its isotopomers , 1987 .

[55]  G. Ellison,et al.  Photoelectron spectroscopy of radical anions , 1986 .

[56]  P. Thaddeus,et al.  Laboratory and astronomical identification of cyclopropenylidene, C3H2. , 1985 .

[57]  W. C. Lineberger,et al.  Methylene: A study of the X̃ 3B1 and ã 1A1 states by photoelectron spectroscopy of CH−2 and CD−2 , 1985 .

[58]  W. Irvine,et al.  The hydrocarbon ring C3H2 is ubiquitous in the Galaxy. , 1985, The Astrophysical journal.

[59]  W. Adam,et al.  Direct Photochemical Cleavage of the Cyclobutane Ring in Bicyclo[4.2.0]octane on 185nm Irradiation in Solution , 1984 .

[60]  J. Dawson,et al.  A gas phase study of the ions and [C3H3]− generated from the reaction of with propyne , 1977 .

[61]  D. E. Milligan,et al.  Matrix isolation study of the vacuum ultraviolet photolysis of allene and methylacetylene. Vibrational and electronic spectra of the species C3, C3H, C3H2, and C3H3 , 1974 .

[62]  R. Bernheim,et al.  Electron Paramagnetic Resonance of Triplet Alternant Methylenes. Propargylene and Homologs , 1965 .

[63]  P. Skell,et al.  STRUCTURE AND PROPERTIES OF PROPARGYLENE C3H21 , 1960 .

[64]  E. Wigner On the Behavior of Cross Sections Near Thresholds , 1948 .