Comparison of Algorithms for Classifying Swedish Landcover Using Landsat TM and ERS-1 SAR Data

[1]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Victor S. Frost,et al.  A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[4]  Alexander A. Sawchuk,et al.  Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[6]  P. Swain,et al.  Neural Network Approaches Versus Statistical Methods In Classification Of Multisource Remote Sensing Data , 1990 .

[7]  E. Nezry,et al.  Adaptive speckle filters and scene heterogeneity , 1990 .

[8]  S. Fleischer,et al.  Drainage basin management — reducing river transported nitrogen , 1991 .

[9]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[10]  I. Kanellopoulos,et al.  Land-cover discrimination in SPOT HRV imagery using an artificial neural network - a 20-class experiment , 1992 .

[11]  Horst Bischof,et al.  Multispectral classification of Landsat-images using neural networks , 1992, IEEE Trans. Geosci. Remote. Sens..

[12]  William J. Mitsch,et al.  Landscape design and the role of created, restored, and natural riparian wetlands in controlling nonpoint source pollution , 1992 .

[13]  B. Arheimer,et al.  Modelling the effects of wetlands on regional nitrogen transport , 1994 .

[14]  Zhenghao Shi,et al.  A comparison of digital speckle filters , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[15]  D. Peddle,et al.  Multi-Source Image Classification II: An Empirical Comparison of Evidential Reasoning and Neural Network Approaches , 1994 .

[16]  Daniel Z. Sui,et al.  Recent Applications of Neural Networks for Spatial Data Handling , 1994 .

[17]  Anil K. Jain,et al.  Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images , 1994, IEEE Trans. Geosci. Remote. Sens..

[18]  Giles M. Foody,et al.  The effect of training set size and composition on artificial neural network classification , 1995 .

[19]  B. Brisco,et al.  Multidate SAR/TM synergism for crop classification in western Canada , 1995 .

[20]  James Darrell McCauley,et al.  Comparison of scene segmentations: SMAP, ECHO, and maximum likelihood , 1995, IEEE Trans. Geosci. Remote. Sens..

[21]  Anil K. Jain,et al.  A Markov random field model for classification of multisource satellite imagery , 1996, IEEE Trans. Geosci. Remote. Sens..

[22]  Jonas Ardö,et al.  Neural networks, multitemporal Landsat Thematic Mapper data and topographic data to classify forest , 1997 .

[23]  B. Turner,et al.  Performance of a neural network: mapping forests using GIS and remotely sensed data , 1997 .

[24]  K. Karlsson Cloud climate investigations in the Nordic region using NOAA AVHRR data , 1997 .

[25]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .