Dykstras algorithm with bregman projections: A convergence proof

Dykstra’s algorithm and the method of cyclic Bregman projections are often employed to solve best approximation and convex feasibility problems, which are fundamental in mathematics and the physical sciences. Censor and Reich very recently suggested a synthesis of these methods, Dykstra’s algorithm with Bregman projections, to tackle a non-orthogonal best approximation problem, They obtained convergence when each constraint is a halfspace. It is shown here that this new algorithm works for general closed convex constraints; this complements Censor and Reich’s result and relates to a framework by Tseng. The proof rests on Boyle and Dykstra’s original work and on strong properties of Bregman distances corresponding to Legendre functions. Special cases and observations simplifying the implementation of the algorithm are aiso discussed

[1]  Clifford Hildreth,et al.  A quadratic programming procedure , 1957 .

[2]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[3]  K. Stromberg Introduction to classical real analysis , 1981 .

[4]  Y. Censor,et al.  An iterative row-action method for interval convex programming , 1981 .

[5]  R. Dykstra An Algorithm for Restricted Least Squares Regression , 1983 .

[6]  S. Lang Real and Functional Analysis , 1983 .

[7]  A. Pierro,et al.  A relaxed version of Bregman's method for convex programming , 1986 .

[8]  R. Dykstra,et al.  A Method for Finding Projections onto the Intersection of Convex Sets in Hilbert Spaces , 1986 .

[9]  Shih-Ping Han,et al.  A successive projection method , 1988, Math. Program..

[10]  A. Peressini,et al.  The Mathematics Of Nonlinear Programming , 1988 .

[11]  R. Mathar,et al.  A cyclic projection algorithm via duality , 1989 .

[12]  W. Glunt,et al.  An alternating projection algorithm for computing the nearest euclidean distance matrix , 1990 .

[13]  Alvaro R. De Pierro,et al.  On the convergence of Han's method for convex programming with quadratic objective , 1991, Math. Program..

[14]  Marc Teboulle,et al.  Entropic Proximal Mappings with Applications to Nonlinear Programming , 1992, Math. Oper. Res..

[15]  Frank Deutsch,et al.  The Method of Alternating Orthogonal Projections , 1992 .

[16]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[17]  Paul Tseng,et al.  Dual coordinate ascent methods for non-strictly convex minimization , 1993, Math. Program..

[18]  Jonathan Eckstein,et al.  Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming , 1993, Math. Oper. Res..

[19]  Marc Teboulle,et al.  Convergence Analysis of a Proximal-Like Minimization Algorithm Using Bregman Functions , 1993, SIAM J. Optim..

[20]  Hein Hundal,et al.  The rate of convergence of dykstra's cyclic projections algorithm: The polyhedral case , 1994 .

[21]  Heinz H. Bauschke,et al.  Dykstra's Alternating Projection Algorithm for Two Sets , 1994 .

[22]  K. Kiwiel Block-iterative surrogate projection methods for convex feasibility problems , 1995 .

[23]  F. Deutsch Dykstra’s Cyclic Projections Algorithm: The Rate of Convergence , 1995 .

[24]  W. Glunt An alternating projections method for certain linear problems in a Hilbert space , 1995 .

[25]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[26]  Y. Censor,et al.  Iterations of paracontractions and firmaly nonexpansive operators with applications to feasibility and optimization , 1996 .

[27]  Marcos Raydan,et al.  Dykstra's Algorithm for a Constrained Least-squares Matrix Problem , 1996, Numer. Linear Algebra Appl..

[28]  P. L. Combettes,et al.  The Convex Feasibility Problem in Image Recovery , 1996 .

[29]  Heinz H. Bauschke,et al.  Projection algorithms and monotone operators , 1996 .

[30]  Yair Censor,et al.  Iterative Averaging of Entropic Projections for Solving Stochastic Convex Feasibility Problems , 1997, Comput. Optim. Appl..

[31]  D. Butnariu,et al.  Convergence of Bregman Projection Methods for Solving Consistent Convex Feasibility Problems in Reflexive Banach Spaces , 1997 .

[32]  Heinz H. Bauschke,et al.  The method of cyclic projections for closed convex sets in Hilbert space , 1997 .

[33]  Heinz H. Bauschke,et al.  Legendre functions and the method of random Bregman projections , 1997 .

[34]  A. Iusem,et al.  On a proximal point method for convex optimization in banach spaces , 1997 .

[35]  Krzysztof C. Kiwiel,et al.  Free-Steering Relaxation Methods for Problems with Strictly Convex Costs and Linear Constraints , 1997, Math. Oper. Res..

[36]  K. Kiwiel Proximal Minimization Methods with Generalized Bregman Functions , 1997 .

[37]  Frank Deutsch,et al.  Two generalizations of Dykstra’s cyclic projections algorithm , 1997, Math. Program..

[38]  K. Kiwiel Generalized Bregman Projections in Convex Feasibility Problems , 1998 .

[39]  Yair Censor,et al.  The Dykstra algorithm with Bregman projec-tions , 1998 .

[40]  Jonathan Eckstein,et al.  Approximate iterations in Bregman-function-based proximal algorithms , 1998, Math. Program..

[41]  Alfredo N. Iusem,et al.  Iterative Methods of Solving Stochastic Convex Feasibility Problems and Applications , 2000, Comput. Optim. Appl..